CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA – CEFET/RJ

Análise de rendimento de uma turbina a gás utilizando resfriamento do ar de aspiração

Marcelo Lincoqueo Laurya

Prof. Orientador: José Vilani Oliveira Junior

Prof.Coorientador: Carlos Eduardo Leme de Nobrega

Rio de Janeiro Junho 2014

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA – CEFET/RJ

Análise de rendimento de uma turbina a gás utilizando resfriamento do ar de aspiração

Marcelo Lincoqueo Laurya

Projeto final apresentado em cumprimento às normas do Departamento de Educação Superior do CEFET/RJ, como parte dos requisitos para obtenção do título de Bacharel em Engenharia Mecânica.

Prof. Orientador: José Vilani Oliveira Junior

Prof.Coorientador: Carlos Eduardo Leme de Nobrega

Rio de Janeiro Junho 2014

DEDICATÓRIA

Eu gostaria de dedicar esse trabalho aos meus pais, especialmente a minha mãe, minha grande amiga e incentivadora.

AGRADECIMENTOS

- Aos meus pais, pois sempre me proporcionaram excelentes oportunidades de estudos e por me incentivarem ao longo da minha vida acadêmica

-Ao Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, agradeço a oportunidade de estudar em uma instituição de excelência na formação de profissionais de engenharia, ampliando nosso conhecimento e capacidade na área de Engenharia Mecânica.

- Aos amigos que fiz ao longo da minha jornada no CEFET-RJ, pelas horas de estudos e de dificuldades as quais demonstravam um verdadeiro companheirismo para comigo.

- Ao meu professor orientador o qual é um excelente profissional, companheiro de trabalho e orientador, onde sempre se mostrou solicito nas horas das dúvidas que tive sanandoas de maneira satisfatória e realizando críticas construtivas sobre o projeto.

RESUMO

Sabe-se que houve um aumento na demanda de energia elétrica nos últimos anos no Brasil como consequência do seu crescimento econômico-industrial e populacional. Assim, observa-se uma crescente utilização das turbinas a gás nos parques de geração de energia, como exemplo as unidades termelétricas, e da indústria de petróleo, por possuírem vantagens como: eficiência mais elevada, que, se comparados a motores de ciclo Otto, ocupam espaço reduzido, são mais leves, possuem menores custos de manutenção e operação, seu tempo de instalação é reduzido, apesar de possuir um requisito de qualidade do combustível maior, operam com uma maior variedade de combustíveis líquidos e gasosos. O presente trabalho tem como objetivo analisar, por meio de cálculos computacionais, o ganho na geração de potência através do resfriamento do ar de admissão, utilizando-se um trocador de calor, localizado na admissão. Para análise, serão utilizados três modelos de turbinas a gás de geração de energia, onde serão utilizados dados como: potência gerada, razão de compressão, vazão mássica, temperatura de entrada na turbina e o tipo de combustível a ser utilizado, que neste caso é o gás natural liquefeito. O parâmetro estudado é a temperatura de admissão do ar, a qual irá variar de 5°C a 55°C.

Palavras-chave: Turbinas a gás, Eficiência, Análise energética.

ABSTRACT

It is known that an increase in electricity demand in recent years in Brazil as a result of its economic and industrial growth and population, thus we observed a growing use of gas turbines in the power generation parks, such as the thermoelectric and in oil industry, because they have advantages such as higher efficiency as compared to Otto cycle engines, occupy reduced space, they are lighter, lower costs, reduced installation time and operate with a greater variety of liquid and gas fuels. This work aims to analyze, through calculate, the yield of power by cooling the intake air through a heat exchanger located on compressor admission. To analysis Three models of gas turbine power generation, where the data will be used such as the power generated, compression ratio, mass air flow, inlet air temperature and type of fuel being used. The main studied parameter is inlet air temperature which will range from 5° C to 55° C.

Keywords: Gas Turbines, Efficiency, Energetic analysis.

Sumário

1	Int	rodução	1
	1.1	Motivação	4
	1.2	Objetivo	5
	1.3	Metodologia	5
	1.4	Organização do projeto	5
2	Má	quinas Térmicas	7
	2.1	Motor Ciclo Otto	8
	2.2	Motor Ciclo Diesel	11
	2.3	Turbina a gás	12
	2.4	Ciclo Brayton	14
3	Co	mponentes de uma turbina a gás	21
	3.1	Compressor	21
	3.2	Câmara de combustão	24
	3.3	Turbina	30
4	Fat	tores que influenciam na geração de potência do ciclo	33
	4.1	Perdas de carga na sucção e descarga	33
	4.2	Variação da temperatura ambiente	33
	4.3	Variação da umidade do ar	33
	4.4	Altitude	35
	4.5	Temperatura limite de operação	35
5	Mé	todos de resfriamento do ar de admissão	37
	5.1	Resfriamento evaporativo	37
	5.1	.1 Resfriamento evaporativo por meio rígido	38
	5.1	.2 Sistema evaporativo por nevoa	40
	5.2	Resfriamento por ciclo termodinâmico por compressão	41

	5.3	Resfriamento por ciclo térmico de absorção	43
6	Equ	uações para estudo de caso	45
	6.1	Ciclo ideal considerando o calor específico constante	
	6.2	Ciclo real considerando o calor específico constante	
	6.3	Ciclo ideal considerando o calor específico variável	51
	6.4	Ciclo real considerando o calor específico variável	53
7	Res	sultados apresentados	56
	7.1	Turbina SGT – 100	58
	7.2	Turbina SGT-200	
	7.3	Turbina SGT – 300	86
8	Co	nclusão	105
9	Sug	gestão para estudos futuros	113
R	Referên	cias Bibliográficas	114
A	pêndi	ce A – Descrição do software EES	116
A	pêndi	ce B – Memória de cálculo do software EES	121

LISTA DE FIGURAS

Figura 1: Diagrama esquemático turbina a vapor	7
Figura 2: Representação de uma câmara de combustão do ciclo Otto	8
Figura 3: Motor por centelha de quatro tempos	9
Figura 4: Diagrama P-v do ciclo Otto	9
Figura 5: Diagrama p-v do ciclo Diesel	11
Figura 6: Componentes básicos de um motor turboajato	12
Figura 7: Esquemático do ciclo aberto	14
Figura 8: Esquemático de um ciclo fechado	14
Figura 9 (a): Diagrama T-s	15
Figura 9 (b): Diagrama P-v	15
Figura 10: Diferença entre um ciclo Brayton ideal e um ciclo real	20
Figura 11: caracterização do compressor e margem de surge	22
Figura 12: Pás dos rotores, seção rotativa	23
Figura 13: Aletas estatoras, seção estacionária	23
Figura 14: Demonstração do comportamento do fluido de trabalho	24
Figura 15: Câmara de combustão tubular	25
Figura 16: Câmara de combustão tubo-anular	26
Figura 17: Câmara de combustão anular	27
Figura 18: Câmara de combustão	28
Figura 19: Distribuição do fluxo de ar na câmara de combustão	29
Figura 20: Configuração de uma turbina de ação	31
Figura 21: Configuração turbina de reação	
Figura 22: Turbina axial	32
Figura 23: Carta psicrométrica	34
Figura 24: Método de interpretação de uma carta psicrométrica	
Figura 25: Aumento da temperatura de queima do combustor	
Figura 26: Diagrama esquemático do sistema de resfriamento por meio	
evaporativo	
Figura 27: Ilustração do sistema evaporativo por meio rígido e seus componentes	
principais	
Figura 28: Diagrama esquemático do resfriamento evaporativo por névoa	40

Figura 29: Bocais utilizados no resfriamento evaporativo por nevoa	41
Figura 30: Diagrama esquemático do resfriamento por ciclo termodinâmico por	
compressão	42
Figura 31: Representação na carta psicrométrica do ar a 30°C com 40% de umidade relativa,	
sendo resfriado a 8°C	43
Figura 32: Diagrama esquemático do resfriamento por ciclo térmico de absorção	44
Figura 33: Representação dos dados de catálogo	59
Figura 34: Gráfico que mostra os rendimentos dos ciclos	61
Figura 35: Gráfico que relaciona potência líquida gerada nos ciclos	64
Figura 36: Taxa de calor aportado dos ciclos	66
Figura 37: Vazão mássica do combustível dos ciclos	69
Figura 38: Taxa de Calor considerando o PCI do combustível dos ciclos	71
Figura 39: Análise do trabalho do compressor dos ciclos	73
Figura 40: Calor específico de cada estado específico em função da temperatura de	
aspiração	74
Figura 41: Dados do catálogo referente à turbina SGT – 200	74
Figura 42: Rendimento dos ciclos em função da variação da temperatura de aspiração	76
Figura 43: Potência líquida produzida dos ciclos	79
Figura 44: Taxa de calor aportado nos ciclos em função da temperatura de aspiração	81
Figura 45: Vazão mássica do combustível nos 4 ciclos	83
Figura 46: Taxa de calor em função do PCI do combustível dos ciclos	85
Figura 47: Análise do trabalho do compressor, dos ciclos, em função da variação da temperat	ura
de aspiração	87
Figura 48: Representação dos dados do catálogo referente à turbina SGT – 300	88
Figura 49: Rendimento dos ciclos em função da variação da temperatura de aspiração	90
Figura 50: Potência líquida produzida nos 4 ciclos	92
Figura 51: Taxa de calor aportado, nos ciclos, em função da temperatura de aspiração	95
Figura 52: Vazão mássica do combustível para os 4 ciclos	97
Figura 53: Taxa de calor considerando o PCI do combustível para os 4 ciclos	99
Figura 54: Análise do trabalho do compressor para os 4 ciclos	101
Figura 55: Análise entre o ciclo que fixa a temperatura de combustão e o ciclo que permite a	
variação da mesma	102
Figura 56: Análise de potência líquida do ciclo considerando a variação da temperatura de qu	eima,
com o ciclo que a considera fixa	103

Figura 57: Análise de rendimento entre os ciclos com variação da temperatura de queima e a
mesma sendo fixada104
Figura 58: Análise entre o calor aportado do ciclo que admite a variação da temperatura de
combustão e o ciclo que trabalha com a mesma fixa105
Figura 59: Gráfico comparativo entre a taxa de calor retirado do ar e a potência produzida, para
turbina SGT – 100
Figura 60: Gráfico comparativo entre a taxa de calor retirado do ar e a potência produzida, para
turbina SGT – 200109
Figura 61: Gráfico comparativo entre a taxa de calor retirado do ar e a potência produzida, para
turbina SGT – 300110
Figura 62: Análise do rendimento entre os três modelos de turbina111
Figura 63: Análise da potência líquida produzida pelos três modelos de turbina em função do
arrefecimento do ar ambiente112
Figura 64: Análise da taxa de calor aportado, para os três modelos de turbina, em função do
arrefecimento do ar ambiente113
Figura A1:Tabela elaborada no programa EES118
Figura A2: Janela de equação do EES119
Figura A3: Janela de formato de equações do EES120
Figura A4: Janela de solução do EES120
Figura A5 (a): Gráfico 3d gerado pelo programa EES121
Figura A4 (b): Gráfico 2d gerado pelo programa EES121

LISTA DE TABELAS

Tabela 1: Tabela que relaciona os rendimentos dos 4 ciclos para cada valor de temperatura do ar
absorvido60
Tabela 2: Valores de potência líquida produzida para cada valor da temperatura do ar de
absorção62
Tabela 3: Valores de calor aportado para cada valor da temperatura do ar de
absorção65
Tabela 4: Valores de vazão mássica do combustível para cada valor da temperatura do ar
aspirado67
Tabela 5: Valores da taxa de calor em função do PCI do combustível para cada valor da
temperatura do ar aspirado69
Tabela 6: Valores do trabalho do compressor para cada valor da temperatura do ar
aspirado71
Tabela 7: Valores de rendimento do ciclo para cada valor da temperatura do ar
aspirado75
Tabela 8: Valores de potência líquida produzida para cada valor da temperatura do ar
aspirado77
Tabela 9: Valores de valor aportado para cada valor da temperatura do ar
aspirado80
Tabela 10: Valores de vazão mássica do combustível para cada valor da temperatura do ar
aspirado82
Tabela 11: Valores de taxa de calor em função do PCI do combustível para cada valor de
temperatura do ar aspirado
Tabela 12: Valores do trabalho do compressor para cada valor de temperatura do ar
aspirado
Tabela 13: Valores do rendimento do ciclo para cada valor de temperatura do ar
aspirado
Tabela 14: Valores de potência líquida para cada valor de temperatura do ar
aspirado91
Tabela 15: Valores da quantidade de calor aportado para cada valor da temperatura do ar
aspirado

Tabela 16: Valores de vazão mássica do combustível para cada valor da temperatura do ar
aspirado96
Tabela 17: Valores da taxa de calor em função do PCI do combustível para cada valor da
temperatura do aspirado
Tabela 18: Valores de trabalho do compressor para cada valor da temperatura do ar
aspirado100
Tabela 19: Valores das temperaturas de queima de cada ciclo para cada valor da temperatura do as
aspirado102
Tabela 20: Valores das potências líquidas dos ciclos para cada valor da temperatura do ar
aspirado103
Tabela 21: Valores dos rendimentos dos ciclos para cada valor da temperatura do ar
aspirado104
Tabela 22: Valores do calor aportado pelos ciclos para cada valor da temperatura do ar
aspirado105
Tabela 23 – Taxa de calor retirado do ar ambiente e potência líquida produzida, no intervalo de 10°C da turbina SGT – 100
Tabela 24 – Taxa de calor retirado do ar ambiente e potência líquida produzida, no intervalo de 10°C da turbina SGT – 200109
Tabela 25 – Taxa de calor retirado do ar ambiente e potência líquida produzida, no intervalo de 10°C da turbina SGT – 300110
Tabela 26 – Incremento do rendimento percentual do ciclo, com o arrefecimento do ar ambiente
para os três modelos de turbina111
Tabela 27 – Incremento percentual da potência líquida produzida, para os três modelos de turbina,
com o arrefecimento do ar ambiente112
Tabela 28 – Incremento percentual da taxa de calor aportado, para cada turbina, com o arrefecimento do ar no intervalo de 5 °C

LISTA DE SIMBOLOGIAS

- $A_1 = Area da seção transversal 1 [m²]$
- $A_2 = Area da seção transversal 2 [m²]$
- C_{esp} = Consumo específico do combustível [kg/s]
- cp = Calor específico a pressão constante [kJ/kg K]
- cp_{ar,1} = Calor específico a pressão constante do ar ambiente [kJ/kg K]
- cpgás,3 = Calor específico a pressão constante do gás da combustão [kJ/kg K]
- $c_v = calor específico a volume constante [kJ/kg K]$
- cv_{ar,1} = Calor específico a volume constante do ar ambiente [kJ/kg K]
- cvgás,3 = Calor específico a volume constante do gás da combustão [kJ/kg K]
- h_1 = Entalpia do ar ambiente [kJ/kg]
- h₂ = Entalpia do final da compressão [kJ/kg]
- h_{2s} = Entalpia ideal do final da compressão [kJ/kg]
- h_{2r} = Entalpia real do final da compressão [kJ/kg]
- h₃ = Entalpia da temperatura de combustão [kJ/kg]
- h₄ = Entalpia do final da expansão [kJ/kg]
- h_{4s} = Entalpia ideal do final da expansão [kJ/kg]
- h_{4r} = Entalpia real do final da expansão [kJ/kg]
- mcombustível = Vazão mássica do combustível [kg/s]
- M = massa molar do ar [g/mol]
- mar = Vazão mássica do ar. [kg/s]
- m_{ar1} = Vazão mássica do ar ambiente [kg/s]
- $\dot{m}_{ar2} = Vazão mássica do ar de final de compressão [kg/s]$
- $P_1 = Pressão do ar ambiente [kPa]$
- P₂ = Pressão de final de compressão [kPa]
- P₃ = Pressão de combustão [kPa]
- $P_4 = Pressão final de expansão [kPa]$
- PCI_{combustível} = Poder calorífico inferior do combustível [kJ/kg]
- PMI = Ponto morto inferior
- PMS = Ponto morto superior
- \dot{Q}_{entra} = Taxa de calor aportado pelo ciclo [kW]

 $Q_{entra} = Quantidade de calor aportado pelo ciclo [kJ/kg]$

- \dot{Q}_{sai} = Taxa de calor rejeitado pelo ciclo [kW]
- $Q_{sai} = Quantidade de calor rejeitado pelo ciclo [kJ/kg]$
- $r_p = Razão de compressão$
- s_1 = Entropia do ar ambiente [kJ/kg K]
- s_{2s} = Entropia ideal do ar do final da compressão [kJ/kg K]
- s_{2r} = Entropia real do ar do final da compressão [kJ/kg K]
- s₃ = Entropia do gás da combustão [kJ/kg K]
- s_{4s} = Entropia ideal do gás de final da expansão [kJ/kg K]
- s_{4r} = Entropia real do gás de final da expansão [kJ/kg K]
- Taxa_{calor,PCI} = Taxa de calor em função do PCI do combustível [kJ/kW h]

 T_1 = Temperatura do ar ambiente [K]

- T_2 = Temperatura final de compressão [K]
- T_{2s} = Temperatura ideal de final de compressão [K]
- T_{2r} = Temperatura real de final de compressão [K]
- T_3 = Temperatura de combustão [K]
- T₄ = Temperatura do final da expansão [K]
- T_{4s} = Temperatura ideal de final de expansão [K]
- T_{4r} = Temperatura real de final de expansão [K]
- $v_1 =$ Velocidade do ar ambiente [m/s]
- $v_2 =$ Velocidade do ar no final da compressão [m/s]
- \dot{W}_{c} = Potência consumida pelo compressor [kW]
- W_c = Trabalho consumido pelo compressor [kJ/kg]
- W_{líq} = Trabalho líquido produzido [kJ/kg]
- Wt = Potência produzida pela turbina [kW]
- W_t = Trabalho produzido pela turbina [kJ/kg]

LETRAS GREGAS

- $$\begin{split} \Delta E &= Variação da energia do sistema \\ \Delta U &= Variação da energia interna do sistema \\ \Delta Ec &= Variação de energia cinética; \\ \Delta Ep &= Variação de energia potêncial \\ \Delta Q &= Variação da quantidade de calor do sistema \\ \Delta W &= Variação do trabalho do sistema \\ \Delta h &= Variação de entalpia do sistema \\ \eta_{compressão} &= Rendimento isentrópico do compressor [%] \\ \eta_t &= Rendimento térmico do ciclo [%] \\ \eta_{turbina} &= Rendimento isentrópico da turbina [%] \\ \rho_1 &= Densidade do ar ambiente [kg/m³] \end{split}$$
- $\rho_2= \ Densidade \ do \ ar \ do \ final \ da \ compressão \ [kg/m^3]$

Capítulo 1

1 Introdução

No Brasil, grande parte da energia elétrica gerada tem origem em empreendimentos hidrelétricos, que correspondem a cerca de 83% de toda a capacidade instalada em todo território nacional, isso é devido à abundancia de bacias hidrográficas no país.

As características negativas das hidrelétricas são:

- Elevados custos de investimento;

- Longos prazos necessários desde a eexecução do projeto, passando pela sua construção até atingir a plena produção de energia;

 Problemas ambientais como a necessidade do alagamento de grandes áreas que, em sua maioria, estão localizadas em regiões de preservação;

A dependência dos períodos de cheia dos rios e dos regimes de chuvas.

Como explicitado anteriormente, as hidrelétricas são dependentes dos períodos de cheia de seus rios e dos regimes de chuvas, para operarem em plena carga, ou seja, possuir a capacidade total de geração de energia. Porém a necessidade do fornecimento de grande quantidade de energia é constante e crescente ao longo dos anos. Entretanto as cheias dos rios e as chuvas não perduram por longos períodos.

Segundo reportagem da EXAME publicada em 20/05/2014, seguindo as exigências ambientais, as novas usinas hidrelétricas de grande porte não podem possuir mais os reservatórios de regulação, assim não conseguem armazenar água para ser utilizada nos períodos de seca, prejudicando assim a produção de energia.

Com isso vem sendo estudada a implantação de unidades termelétricas, que visam minimizar a dependência da matriz energética do sistema hidrelétrico, atuando como suplementação para a produção de energia elétrica.

As unidades termelétricas possuem como vantagens a possibilidade de serem instaladas em tempo relativamente curto, baixo custo de investimento e impacto visual, pois são menores em comparação às hidrelétricas.

Estas usinas termelétricas produzem energia elétrica a partir de energia térmica, onde convertem o calor, oriundo da queima da mistura ar combustível, em energia para

movimentar as turbinas e produzir potência no eixo para movimentar o gerador de energia elétrica. Por não serem dependentes das condições climáticas, como período de chuva, as usinas termelétricas funcionam como um sistema complementar de geração de energia, conferindo maior confiabilidade ao sistema de geração de energia brasileiro. Estas unidades vêm fazendo uso das turbinas a gás em ciclo combinado, com o objetivo de alcançar melhores rendimentos na geração de energia.

As unidades termelétricas são utilizadas também, em lugares onde é praticamente inviável o fornecimento de energia por meio de cabos, como cidades que estão localizadas muito distantes das hidrelétricas e que são de difícil acesso, assim como as plataformas de petróleo que estão muito distantes da costa.

Na indústria petrolífera, as turbinas a gás são utilizadas não somente para geração de energia elétrica, como também, para energização de bombas elétricas e os compressores de gás, que têm a função de bombear água ou comprimir $C0_2$ para injetar nos poços de petróleo, auxiliando, assim, a extração do mesmo.

Como o espaço dentro de uma plataforma é reduzido, o emprego das turbinas a gás é indicado, pois, ocupam pouco espaço físico, possuem maior densidade de potência, eficiência elevada e geram menos vibrações, se compradas ao motor de ciclo Otto.

No caso de modernas usinas termelétricas com turbinas a gás trabalhando em ciclo combinado utilizando gás natural, a atenção principal está voltada para emissão do PAN (peroxiacetil-nítrico) e do NOx, que na atmosfera e na presença de luz pode reagir produzindo chuva ácida em combinação com a umidade da mesma, posteriormente, causando a destruição da camada de ozônio a grandes altitudes. Além disso, a emissão de outro gás resultante do processo de combustão, que também preocupa os órgãos ambientais é o Dióxido de Carbono $C0_2$ um dos principais responsáveis pelo efeito estufa que conduz ao aquecimento global.

O aumento na temperatura de aspiração na turbina tem como efeito o incremento a quantidade de gases, citados acima, onde cada vez mais as regulamentações ambientais tem como objetivo reduzir a taxa de emissão dos mesmos.

Porém o impacto das usinas termoelétricas não se resume a emissão de gases da combustão. Através do Estudo de Impacto Ambiental (EIA), que é um estudo realizado antes da realização de empreendimentos que possam alterar a qualidade socioambiental da região onde for empregado, pode-se ter a dimensão no que a construção de uma usina termelétrica impacta, como exemplo podem ser citados:

- Alteração do conforto acústico, devido a sua operação.

- Perda de habitats e espécimes da fauna marinha e terrestre.

- Geração de emprego e renda, com isso gerando atração populacional e consequente aumento da população da região.

O gás natural é, em princípio, isento de Enxofre e de cinzas, o que torna dispensável as custosas de dessulforização e eliminação de cinzas, que são exigidas nas térmicas de carvão e óleo.

O problema de chuvas ácidas é mínimo em unidades que utilizam turbinas a gás, e a contribuição para o aquecimento global, por kW gerado, é menor devido a melhor eficiência térmica. Como o gás natural é rico em Hidrogênio, se comparado aos demais combustíveis fósseis, a produção de gás carbônico gerada pela sua queima é relativamente baixa.

Estudos realizados (ASHRAE, 2008*a*) apontam os benefícios, para o meio ambiente, na utilização do sistema de arrefecimento do ar de admissão, *Combustion Gas Turbine Inlet Cooling* (CTIC), que reduz a emissão de gases poluentes como os citados anteriormente.

Contudo, apesar de o Brasil vir demonstrando cada vez mais sua dependência do gás natural como fonte de geração de energia elétrica, em decorrência das questões ambientais que circundam a utilização das hidrelétricas, a sua implementação no país ainda é algo longínquo ou remoto, devido à grande burocracia nas regras dos leilões, que não viabilizam projetos a gás privados e muito menos de contratos de longo prazo para importação de GNL (Gás Natural Liquefeito). Além disso, as regras dos leilões são bastante restritivas, requerendo comprovação de reservas de gás e acesso à capacidade de terminais de GNL, que são atualmente de uso exclusivo da Petrobras.

Para que o gás natural seja implantado no Brasil como um insumo energético para geração de energia elétrica, será necessário a intervenção do governo no estabelecimento do preço do combustível e, possivelmente a realização de incentivo fiscal, para que essas usinas consigam sair da fase de projeto e tornem-se realidade.

A única térmica a gás construída nos últimos cinco anos, no Maranhão, é um projeto independente, com uma plataforma integrada entre produtor de gás e gerador de eletricidade. Infelizmente não foi possível replicar esse modelo em outras regiões do país.

1.1 Motivação

Um dos maiores desafios da indústria e um dos principais objetivos é a otimização de seus recursos e minimização de perdas associadas ao processo, no caso das termelétricas, elas utilizam em sua planta o ciclo combinado para atingir níveis de eficiência energética maiores.

Através de estudos desenvolvidos anteriormente, tem-se que a energia gerada pela turbina a gás, ao final do ciclo, sofre influência direta da temperatura do ar admitido pelo compressor, onde as temperaturas elevadas do ar admitido causam queda na produção de potência, pois, quanto maior for a temperatura do ar de admissão, menor será sua densidade, diminuindo o valor da massa de ar admitida e ocasionando a queda na produção de energia.

Porém estudos também apontam que existe um limite para o resfriamento do mesmo ar admitido pelo compressor, onde o limite seria em torno de 10°C, pois o resfriamento abaixo desse valor acarretaria em um congelamento do e assim congelando elementos do compressor, prejudicando o seu trabalho e com isso seu rendimento.

Um ponto muito relevante na questão da potência produzida pela turbina a gás é a temperatura de projeto ser diferente da temperatura de operação da mesma, devido ao fato dos fabricantes desses equipamentos estarem localizados em países cujos climas são caracterizados por baixas temperaturas, ou seja, climas frios e as condições de construção seguidas por eles são as estabelecidas pela *International Organization for Standardization* (ISO) ou Organização Internacional para Padronização, cuja qual estabelece as seguintes condições:

- Temperatura ambiente de 15°C;
- Umidade relativa do ar igual a 60%;
- Pressão ambiente do ar igual a 101,3 kPa.

Onde a temperatura de projeto para admissão do ar pelo compressor é a mesma da condição ISO, porém se a turbina for utilizada em países tropicais como Brasil, sua temperatura de operação será em torno de 27°C, onde é percebida uma diferença para a temperatura de projeto, assim influenciando de maneira direta e negativa na geração de potência líquida do dispositivo. Como preceitua Carvalho Junior, "quanto maior a temperatura, menor a potência gerada pela turbina [...]" (CARVALHO JUNIOR, 2012, p. 21)

Durante o decorrer do dia pode ser observada uma variação de temperatura do dia e à noite, onde a mesma irá acarretar em uma variação da potencia gerada pelo ciclo, onde o resfriamento da admissão também irá contribuir para uma constância da temperatura de admissão do compressor, buscando assim manter constante a produção de potência ao longo do dia, sem sofrer a influência da variação da temperatura ambiente.

Para que o aumento da geração de potência seja eficaz, devem ser otimizadas as variáveis fundamentais de projeto, tais como: razão de compressão, relação ar/combustível, temperatura de entrada dos gases quentes na turbina de potência e temperatura do ar de admissão do compressor.

1.2 Objetivo

O presente trabalho tem como objetivo a realização de uma análise da variação de potência de três modelos de turbina a gás, através do resfriamento do ar de admissão.

Estudos realizados apontam a eficácia do CTIC (*Combustion Gas Turbine Inlet Cooling*), que é o sistema de resfriamento do ar de aspiração da mesma.

1.3 Metodologia

Será utilizado o programa de computador EES (Engineering Equation Solver), com a finalidade de efetuar cálculos e obter resultados para embasar a análise, onde serão estudados três modelos diferentes de turbinas a gás de geração de energia, em condições de regime permanente, não sendo considerada a temperatura de bulbo úmido, sendo a temperatura de admissão o principal parâmetro estudado. A mesma sofrerá variação entre 05°C e 55°C.

As turbinas a gás são construídas seguindo as condições ISO, porém, no estudo realizado, os dados que foram utilizados foram retirados do catálogo do fabricante das turbinas, onde os dados são baseado na utilização do ar seco.

1.4 Organização do projeto

O projeto foi desenvolvido em dez capítulos de forma que houvesse uma apresentação do tema selecionado e metodologia a ser desenvolvida no trabalho. No capítulo

1 foi feita uma introdução do tema e apresentação do objetivo e metodologia do estudo. No capítulo 2 foi realizada a apresentação da idéia sobre máquinas térmicas e explicação breve dos ciclos Otto, Diesel e Brayton. Seguindo, no capítulo 3 são demonstrados os principais componentes de uma turbina a gás. Ao longo do capítulo 4 são evidenciados os fatores que influenciam a geração de potência do ciclo. No capítulo 5 os métodos de resfriamento do ar de admissão como, método evaporativo, por nevoa, compressão e absorção são expostos de maneira sucinta. Ao decorrer do capítulo 6 foram demonstradas as equações utilizadas no estudo de caso, em cada rotina. O capítulo 7 apresenta através de gráfico e tabelas os resultados obtidos no estudo e sua interpretação. Sendo feita no capítulo 8 a conclusão do projeto, finalizando no capítulo 9 as sugestões para futuros estudos sobre o abordado.

Capítulo 2

2 Máquinas Térmicas

São chamadas máquinas térmicas os dispositivos que fazem a conversão da energia térmica em trabalho mecânico, através dos seguintes processos:

- Recebimento de calor de uma fonte quente, à alta temperatura;

- Conversão de parte do calor, fornecido pela fonte quente, em trabalho;

- Rejeição do restante do calor não aproveitado para uma fonte fria, de baixa temperatura;

- Operam em um ciclo.

Usualmente, as máquinas térmicas utilizam um fluido, denominado fluido de trabalho, a partir do qual, o calor é transferido, enquanto a máquina realiza trabalho.

Dispositivos que produzem trabalho e que não operam em um ciclo termodinâmico, são classificados com frequência como máquinas térmicas, incluem-se nesse caso máquinas envolvem combustão interna como:

- Motores de combustão interna, ciclo Otto e Diesel;

- Turbinas a gás (a ser explanada no próximo capítulo).

Esses dispositivos operam em um ciclo mecânico, mas não em um ciclo termodinâmico, já que o fluido de trabalho, gases oriundos da combustão, não realizam um ciclo completo.

Porém, tanto o motor regido pelo ciclo Otto como pelo ciclo Diesel, ocupam um espaço relativamente grande, se comparado à turbina a gás, por serem motores alternativos. Devido ao movimento de "vai e vem", geram elevadas vibrações, que, em determinadas instalações, como plataformas de extração de petróleo, isso é indesejado.

O dispositivo que melhor se adapta a classificação de máquina térmica é a turbina a vapor, regida pelo ciclo Rankine, pois é uma máquina de combustão externa, ou seja, a combustão ocorre fora da máquina, onde a energia liberada pela combustão é transferida para o vapor na forma de calor. A figura 1 mostra um diagrama esquemático de uma máquina a vapor básica.

Figura 1: Diagrama esquemático de uma turbina a vapor [4]

2.1 Motor Ciclo Otto

Em 1862, Beau de Rochas enunciou o ciclo de "quatro tempos", que, primeiramente, o alemão Otto aplicara a um motor térmico, de onde surgiu, em algumas obras, a designação de "Ciclo Otto". Este é um termodinâmico, que idealiza o funcionamento de motores alternativos de combustão interna de ignição por centelha. Os motores de ignição por centelha são compostos por um motor cujo interior abriga a câmara de combustão, onde ocorrem quatro processos:

- 1. Admissão
- 2. Compressão
- 3. Queima da mistura ar/combustível (Combustão)
- 4. Descarga do produto da queima (Escape)

A câmara de combustão é composta pelos seguintes elementos, como ilustrado a seguir:

- Válvulas de admissão e de descarga
- Vela (para centelha)
- Pistão

Como ilustra a figura 2.

Figura 2: Representação de uma câmara de combustão do ciclo Otto [4]

O ciclo inicia-se com a válvula de admissão, como objetivo permitir a entrada do ar admitido juntamente com o combustível pulverizado na câmara de combustão aberta e o pistão na posição ponto morto inferior. Este é o primeiro estágio do ciclo, chamado de admissão. Logo após a mistura ar/combustível ter entrado na câmara de combustão, o pistão, que está ligado ao conjunto biela-manivela, que por sua vez está ligado ao eixo virabrequim, começa a subir, comprimindo a mistura até a posição de ponto morto superior e a válvula de admissão fechada. Este é o segundo estágio do ciclo, chamado compressão, que é caracterizado por ser um ciclo a volume constante. Após isso, inicia-se o terceiro estágio do ciclo, denominado combustão, que dar-se-á por meio de centelha, através da vela de ignição, onde observa-se um aumento na pressão e temperatura. Nesse momento, o cilindro será empurrado pelo gás, a alta pressão, para sua posição de origem, ponto morto inferior. Enquanto o pistão fizer o movimento de ir da posição de ponto morto superior para ponto morto inferior, ele irá transmitir o movimento para o conjunto biela manivela, que irá transmitir o movimento para o eixo virabrequim, onde se transformará em trabalho no eixo. Ao transmitir totalmente o movimento para o eixo, o pistão estará na posição ponto morto inferior e a câmara estará cheia de resíduos resultante da combustão. O pistão move-se para cima até o ponto morto superior. A válvula de descarga abre-se concomitantemente, para que os resíduos da combustão sejam expulsos da câmara. Assim o ciclo realiza seu último estágio, chamado de exaustão ou descarga.

Chama-se de ponto morto inferior, o ponto mais baixo que o pistão atinge no ciclo quando este desce, neste ponto não há mais a transferência da energia, proveniente da combustão, em trabalho no eixo, também é onde o final da fase de admissão de mistura ar/combustível na câmara de combustão se dá. Chama-se de ponto morto inferior, o ponto final de subida do pistão, neste ponto o pistão não consegue mais comprimir a mistura ar/combustível, também indica o final da exaustão dos gases resultantes de combustão e início da admissão da mistura ar/combustível

A seguir, as figuras 2 e 3 irão ilustrar o que foi explicado, a figura 4 ilustra o gráfico do ciclo Otto, em função da pressão e do volume específico.

Figura 3: Motor por centelha de quatro tempos [4]

Figura 4: Diagrama P-v do ciclo Otto [4]

2.2 Motor Ciclo Diesel

O ciclo Diesel é voltado para motores alternativos de ignição por compressão. O processo de geração de energia no ciclo Diesel é semelhante ao apresentado no ciclo Otto. A principal diferença está no método de início da combustão. Nos motores de ignição por centelha, a mistura ar/combustível é comprimida a uma temperatura abaixo da temperatura de autoignição do combustível. Ela é iniciada pela centelha de uma vela de ignição. Já nos motores de ignição por compressão, o ar é comprimido até uma temperatura acima da temperatura de autoignição do combustível. A combustão é iniciada pelo contato, à medida que o combustível é injetado nesse ar quente. Logo, a vela de ignição é substituída por um injetor de combustível.

Nos motores de ciclo Diesel, apenas o ar é comprimido durante o estágio de compressão. Assim, é eliminado o problema de autoignição, pois como foi dito anteriormente a temperatura a qual o ar é comprimido é superior a temperatura de autoignição do combustível. Portanto, esses tipos de motores podem ser desenvolvidos para operarem à taxas de compressão mais elevadas, podendo assim utilizar combustíveis menos refinados, ou seja, com baixa octanagem.

Esses motores possuem a razão de compressão mais elevadas, como demonstra a figura 5 e são, em geral, mais eficientes do que os motores de ignição por centelha. Isso somado com a possibilidade de utilizar combustíveis menos refinados, que significa menor custo, tornam-se boas opções para serem utilizados em aplicações que exigem uma quantidade grande de potência, como motores de locomotiva, unidades de emergência para geração de potência, automóveis, caminhões e navios.

Figura 5: Diagrama P-v do ciclo Diesel [4]

2.3 Turbina a gás

As turbinas a gás são máquinas térmicas, onde seu objetivo é a produção de energia mecânica, através da energia térmica contida nos gases gerados pela queima do combustível.

Elas dividem-se em duas categorias, que são:

- Aeroderivativas;
- Geração de potência (heavy-duty)

As turbinas aeroderivativas são amplamente empregadas na indústria aeronáutica, pois são leves, compactas e possuem uma boa relação peso-potência.

Esse tipo de turbina funciona em um ciclo aberto denominado ciclo de propulsão a jato, que difere do ciclo Brayton ideal, pois, os gases da combustão não se expandem até a pressão ambiente no interior da turbina. Eles expandem-se até uma determinada pressão, em que a potência produzida pela turbina seja suficiente para acionar o compressor e os equipamentos auxiliares, como bombas hidráulicas. Logo, o trabalho líquido produzido em um ciclo de propulsão é zero, uma vez que o principal objetivo das turbinas é a produção de empuxo necessário para movimentar a aeronave. Isso se deve ao fato de que os gases, quando deixam a turbina, encontram-se a elevada pressão sendo acelerados, posteriormente, em um bocal.

As turbinas empregadas nos aviões trabalham com razões de compressão mais elevadas e o ar passa primeiro por um difusor onde sofre uma desaceleração e um aumento de pressão antes de entrar no compressor Elas podem ser de três tipos:

- Motor a hélice;
- Motor a jato ou turbojato;
- Motor turboélice

A figura 6 ilustra uma turbina a gás aeroderivativa.

Figura 6: Componentes básicos de um motor turboajato [4]

As turbinas as gás voltadas para geração de energia elétrica ou para propulsão naval, também são chamadas de turbinas tipo *heavy-duty*.

Nessas turbinas, os compressores mais utilizados são os axiais, onde o fluxo de ar corre paralelamente ao eixo, contendo um número elevado de estágios. Cada estágio no compressor é formado por uma pá rotativa, que é responsável pela aceleração do ar, e por aletas estatoras (pás fixas na carcaça do compressor), que têm a função de desacelerar o ar, aumentando assim sua pressão e o direcionando, para que ele incida nas pás rotativas, do próximo estágio, com o mesmo ângulo.

Cerca da metade da potência produzida pela turbina de potência é utilizada para acionar o compressor, sendo o restante da potência líquida gerada, aplicada para movimentar o gerador elétrico.

Os gases que deixam a câmara de combustão possuem temperatura elevada, cerca de 1250°C. Após passarem pela turbina de potência, eles ainda possuem uma elevada temperatura e energia. Os gases de escape de uma turbina a gás contêm uma enorme energia térmica. Esta energia pode ser utilizada em uma caldeira de recuperação de calor para a produção de vapor que, por sua vez, pode der expandido em uma turbina a vapor. esta configuração é denominada geração em ciclo combinado.

Um sistema que de ciclo combinado requer consideravelmente menos combustível para produzir a mesma quantidade de potência elétrica que seria produzida em dois sistemas simples separados. Utilizando modernas turbinas o rendimento de uma instalação com ciclo combinado é superior a 50%

As turbinas as gás, que operam em ciclo simples, possuem uma singularidade, que é a diminuição da temperatura de saída dos gases da turbina de potência e um aumento na taxa de compressão.

2.4 Ciclo Brayton

"O ciclo Brayton foi proposto por George Brayton, para ser utilizado no motor alternativo desenvolvido por ele em 1870. Hoje, é apenas usado em turbinas a gás, nas quais os processos de compressão e expansão ocorrem em um maquinário rotativo.[...]" (ÇENGEL; BOLES, 2006, p.507)

O ciclo apresentado acima pode ser divido em dois ciclos: o ciclo ideal e ciclo real.

No ciclo ideal as irreversibilidades do processo são desprezadas; assim como não há perda de carga por atrito, o ar escoa a pressão constante, idealizando o ar-padrão. O ciclo tem início com a admissão do ar, em condição ambiente, pelo compressor, onde sofrerá compressão adiabática e isoentrópica e aumento de temperatura, e consequente aumento da entalpia. Após isso, chegará à câmara de combustão, onde irá se misturar com combustível e sofrerá combustão à pressão constante. Ao sair da câmara de combustão, os gases à alta temperatura e pressão irão sofrer uma expansão isoentrópica até a pressão ambiente, conforme passam pela turbina de geração de potência. Na medida que o fluido exerce trabalho sobre as pás da turbina, reduz-se a pressão e a temperatura até a condição ambiente. Assim, este ciclo é classificado como aberto, pois os gases resultantes são rejeitados do sistema de forma que eles não recirculem dentro do ciclo, como ilustrado na figura 7.

A rejeição de calor é um limite físico, intrínseco ao funcionamento de ciclos termodinâmicos, mesmo nos casos ideais, como define a segunda lei da termodinâmica.

Figura 7: Esquemático do ciclo aberto [4]

No ciclo fechado, os processos de compressão e expansão permanecem iguais ao ciclo aberto, porém, o processo de combustão é substituído por um processo de fornecimento de calor, por um trocador de calor, à pressão constante, a partir de uma fonte externa, e o processo de exaustão é substituído por um processo de rejeição de calor a uma pressão constante, permitindo a recirculação do ar no ciclo, como mostra a figura 8.

Figura 8: Esquemático de um ciclo fechado [4]

O ciclo ideal também pode ser representado através de gráficos como: os gráficos Pv e T-s da figura 9(a) e 9(b). Através deles, pode-se observar que as áreas de cada figura podem ser interpretadas como calor e trabalho por unidade de massa, onde no diagrama T-s a área da figura em questão pode ser interpretada como calor líquido absorvido e no diagrama P-v a área representa o trabalho líquido produzido.

Figura 9(b): Diagrama P-v [4]

Para calcular: o trabalho produzido por uma turbina, o trabalho consumido por um compressor e o calor adicionado e rejeitado pelo processo. É necessário primeiro fazer o cálculo de balanço de energia para um escoamento em regime permanente.

$$\Delta E = \Delta U + \Delta E c + \Delta E p \tag{2.0}$$

Onde,

 $\Delta E = Variação da energia do sistema;$

 $\Delta U = Variação da energia interna do sistema;$

 $\Delta Ec = Variação de energia cinética;$

 $\Delta Ep = Variação de energia potêncial.$

Os parâmetros como variação de energia cinética e variação de energia potencial, são desprezados. Temos que a fórmula 3.0 ficará assim escrita:

$$\Delta Q - \Delta W = \Delta h \tag{2.1}$$

A quantidade de calor transferida para o fluído de trabalho e rejeitado por ele, o ar, é:

$$Q_{\text{entra}} = h_3 - h_2 = c_p * (T_3 - T_2)$$
(2.2)

$$Q_{sai} = h_4 - h_1 = c_p * (T_4 - T_1)$$
(2.3)

Trabalho da turbina por unidade de massa:

$$\frac{\dot{W}_{t}}{\dot{m}_{ar}} = h_{3} - h_{4} \tag{2.4}$$

Trabalho do compressor por unidade de massa:

$$\frac{\dot{W}_c}{\dot{m}_{ar}} = h_2 - h_1 \tag{2.5}$$

Calor fornecido por unidade de massa:

$$\frac{\dot{Q}_{entra}}{\dot{m}_{ar}} = h_3 - h_2 \tag{2.6}$$

Calor rejeitado por unidade de massa:

$$\frac{\dot{\mathbf{Q}}_{sai}}{\dot{\mathbf{m}}_{ar}} = \mathbf{h}_4 - \mathbf{h}_1 \tag{2.7}$$

Quando o ciclo Brayton ideal é analisado com base no ar-padrão frio, os calores específicos são considerados constantes. Logo a eficiência térmica do ciclo é calculada do modo demonstrado abaixo:

$$\eta_{t} = \frac{w_{liq}}{Q_{entra}} = 1 - \frac{Q_{sai}}{Q_{entra}} = 1 - \frac{c_{p}*(T_{4} - T_{1})}{c_{p}*(T_{3} - T_{2})} = 1 - \frac{T_{1}*(T_{4}/T_{1} - 1)}{T_{2}*(T_{3}/T_{1} - 1)}$$
(2.8)

Onde:

 $w_{liq} = Trabalho líquido produzido$

Para relações isoentrópicas de expansão e compressão, tem-se:

$$\frac{\mathrm{T}_2}{\mathrm{T}_1} = \left(\frac{\mathrm{P}_2}{\mathrm{P}_1}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}} \tag{2.9}$$

$$\frac{\mathrm{T}_3}{\mathrm{T}_4} = \left(\frac{\mathrm{P}_3}{\mathrm{P}_4}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}} \tag{2.10}$$

Como os processos de compressão e expansão são isoentrópicos, suas pressões são iguais, $P_2 = P_3$ e $P_4 = P_1$. Assim,

$$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{(k-1/k)} = \left(\frac{P_3}{P_4}\right)^{(k-1/k)} = \frac{T_3}{T_4}$$
(2.11)

Assim, a eficiência térmica do ciclo fica simplificada a:

$$\eta_{t} = 1 - \frac{1}{r_{p}^{(k-1)/k}}$$
(2.12)

Onde, r_p razão de compressão $\left(\frac{P_2}{P_1}\right)$ e k é arazão dos calores específicos $\left(\frac{c_p}{c_v}\right)$, onde c_p é o calor específico a pressão constante e c_v é calor específico a volume constante.

No ciclo real, são consideradas as irreversibilidades do processo, como o atrito do ar nas paredes do compressor, pequena perda de pressão na câmara de combustão e também o atrito dos gases, resultantes da combustão, nas paredes da turbina. Essas irreversibilidades podem ser mensuradas através do cálculo das entropias em cada um dos elementos citados. Onde o aumento do valor da entropia, significa que mais irreversível é o processo, ou seja, mais perda de energia ele sofre.

À medida que os efeitos da irreversibilidade no compressor, na câmara de combustão e na turbina, vão sendo considerados, verificam-se quedas de pressão durante os processos de adição e rejeição de calor. A mais importante consequência da irreversibilidade nesses componentes é que o trabalho fornecido para a compressão real é maior e o trabalho produzido pela turbina é menor, comparado ao ciclo ideal, resultando num decréscimo acentuado no trabalho líquido da turbina a gás. Se o compressor e a turbina são muito irreversíveis, isto é, com rendimento isoentrópico muito baixo, pode-se ter rendimento do ciclo baixo. De todas as irreversibilidades, a que possui maior importância é a combustão. As eficiências da turbina e do compressor serão calculadas através das expressões abaixo:

$$\eta_{\text{turbina}} = \frac{(\dot{W}_t/\dot{m})_a}{(\dot{W}_t/\dot{m})_s} = \frac{h_3 - h_{4a}}{h_3 - h_{4s}}$$
(2.13)

$$\eta_{\text{compressor}} = \frac{(\dot{W}_c/\dot{m})_s}{(\dot{W}_c/\dot{m})_a} = \frac{h_{2s} - h_1}{h_{2a} - h_1}$$
(2.14)

Onde índice s, das Equações acima, remete ao ciclo isentrópico e o índice a, das mesmas, remete ao ciclo real

As eficiências isentrópicas da turbina e do compressor, também podem ser calculadas através da razão de compressão dada como mostram as Equações empíricas abaixo:

$$\eta_{\text{compressor}} = 1 - \left(0.04 + \frac{R_{p} - 1}{150}\right)$$
 (2.15)

$$\eta_{\text{turbina}} = 1 - \left(0.03 + \frac{R_p - 1}{180}\right)$$
 (2.16)

A diferença existente entre as quatro equações demonstradas reside em que as duas primeiras utilizam dados calculados, possível quando a temperatura de queima é fornecida, enquanto as duas últimas utilizam a relação de compressão dado fornecido pela maioria dos catálogos dos fornecedores.

Como é ilustrado na figura 10.

Figura 10: Diferença entre um ciclo Brayton ideal e um ciclo real [4]

Os índices $2_r e 4_r$ são as temperaturas reais de saída do compressor e da turbina, e os índices $2_s e 4_s$ são as temperaturas isoentrópicas ou ideais.

As diferenças entre os ciclos real e ideal não estão somente nas temperaturas de alguns estados específicos. Como pode ser notado o desenho dos gráficos também é uma diferença muito relevante para o processo. Isto se dá devido as diferenças entre as linhas de pressão de cada ciclo, as linhas pontilhadas referem-se às linhas de pressão do ciclo real e as cheias às linhas de pressão do ciclo ideal, sendo assim o desenho do gráfico do ciclo ideal é maior em comparação ao ciclo ideal. Com isso conclui-se que o rendimento do primeiro é maior que o do segundo e que o calor aportado também é proporcional ao rendimento do ciclo, sendo assim o rendimento e o calor aportado pelo ciclo ideal é maior do que visto no ciclo real.
Capítulo 3

3 Componentes de uma turbina a gás

3.1 Compressor

É o componente da turbina onde o fluído de trabalho, o ar, sofre aumento de pressão. Geralmente são empregados os compressores do tipo dinâmico (axial e centrífugo). O compressor axial é usado principalmente em aplicações de média e alta potência, tem uma baixa relação de compressão entre estágios, como consequência possui elevado número de estágios para que se consiga alcançar elevadas relações de compressão, enquanto o compressor centrífugo é utilizado em aplicações de baixa potência. Tanto o compressor axial quanto centrífugo, são limitados em sua faixa de operação com o que é comumente chamado de *stall* rotativo e o *surge*. O tipo de compressor aplicado nas turbinas objeto de estudo é do tipo axial.

O *stall* rotativo é o fenômeno de deslocamento do escoamento nas pás do rotor e tem como consequência a perda da capacidade de elevar ou manter a pressão do sistema. Esta incapacidade de manter a pressão pode provocar o *surge*, que é um fenômeno caracterizado por violentas pulsações aerodinâmicas, provocadas pelo movimento cíclico do fluxo de massa no compressor. Sua ocorrência está diretamente ligada ao *stall*. Além das pulsações outra consequência do surge é que no retorno do fluxo, o compressor pode acabar admitindo a chama da combustão

Um modo encontrado para evitar a ocorrência do *surge* é o emprego de válvulas de alívio instaladas nos últimos estágios, que ficam abertas aliviando a pressão para atmosfera durante a fase de aceleração e parada do compressor.

O princípio de funcionamento de um compressor axial é o da aceleração do ar com posterior transformação em pressão. Ele é composto por uma seção estacionária, onde se encontram instalados os anéis com aletas estatoras e a seção rotativa composta por um conjunto de rotores com pás. Cada estágio de compressão é composto por um rotor com pás que possuem um ângulo de ataque, onde o ângulo mínimo é de 4° e o máximo 12° visando evitar o *stall* e o *surge*, e um anel com aletas estatoras. O rotor com as palhetas é responsável pela aceleração do ar, assim como um ventilador. É nesta etapa que o fluído de trabalho, o

ar, recebe trabalho para aumentar a energia de pressão, velocidade e temperatura. O anel de aletas estatoras tem a função de direcionar o ar para que ele incida com um ângulo favorável sobre as palhetas do próximo estágio e promover a desaceleração do fluxo de ar para que ocorra a transformação da energia da velocidade em pressão. Essas máquinas são projetadas para que a velocidade na entrada de cada rotor seja a mesma para a condição de máxima eficiência.

Para caracterizar um compressor e definir regiões estáveis de operação, são utilizados gráficos que relacionam pressão e vazão mássica, parametrizadas pela velocidade de rotação do eixo como será mostrado na figura 11. Uma desvantagem do compressor axial é apresentar faixa operacional pequena, entre os limites de *stall*.

Figura 11: Caracterização do compressor e margem de surge [2]

As figuras 12 e 13, a seguir, ilustram as pás dos rotores axiais e as aletas estatoras.

Figura 12: Pás dos rotores, seção rotativa [2]

Figura 13: Aletas estatoras, seção estacionária [2]

Este processo é repetido nos estágios seguintes do compressor, onde cada estágio promove um pequeno aumento de pressão. O fluxo de ar no compressor se dá paralelo ao eixo (axial) numa trajetória helicoidal, a seção de passagem é reduzida da admissão para descarga, com o objetivo de manter a velocidade do ar constante dentro da faixa de operação, uma vez que a pressão se eleva a cada estágio e respectivamente a massa específica, como indica equação da continuidade.

$$\dot{\mathbf{m}}_{ar1} = \dot{\mathbf{m}}_{ar2} \tag{3.0}$$

$$\rho_1 * A_1 * v_1 = \rho_2 * A_2 * v_2 \tag{3.1}$$

As aletas estatoras do último estágio agem como pás guias, com o objetivo de direcionar o fluído de trabalho em um fluxo axial estabilizado para a carcaça traseira do compressor, onde se localiza a seção de combustão.

O compressor é projetado para operar com alta eficiência em altas rotações. Para manter o fluxo de ar estabilizado à baixa rotação, tem-se instalado, na admissão de ar, um conjunto de aletas móveis, guias de entrada (IGV – Inlet Guide Vanes), que automaticamente altera o ângulo de ataque das palhetas para o primeiro rotor. A eficiência é gradualmente aumentada de acordo com o aumento da rotação. As válvulas de sangria são instaladas para prevenir o surge em baixas rotações. O conjunto I.G.V e válvulas de sangria fazem parte do sistema de controle do fluxo de ar da turbina.

A figura 14, a seguir, ilustra através de um gráfico o comportamento da pressão, velocidade e temperatura do fluido de trabalho em uma turbina a gás.

Figura 14: Demonstração do comportamento do fluido de trabalho em uma turbina a gás. [7]

3.2 Câmara de combustão

A combustão em uma turbina a gás é um processo contínuo realizado a pressão constante. O fornecimento contínuo de combustível é misturado e queimado junto com o ar comprimido, à medida que a mistura escoa através da zona de chama. A chama contínua não toca as paredes da camisa da câmara de combustão, sendo modelada e estabilizada pela distribuição do fluxo de ar admitido, que também tem a função de resfriar toda a câmara de

combustão. Podem ser queimadas, misturas com ampla faixa de variação da relação combustível - ar, pois a proporção combustível - ar é mantida normal na região da chama, sendo o excesso de ar injetado a jusante da chama.

Para que o projeto de uma câmara de combustão seja considerado aceitável ele deve possuir as seguintes características principais:

- Permitir a queima da mistura combustível-ar com perda mínima de pressão, pois no motor a reação à queima é feita à pressão constante.

- Toda queima deve ocorrer dentro da câmara, sem haver o deslocamento da chama.

- Não pode haver tendência à extinção de chama, uma vez que a ignição só ocorre durante o ciclo de partida.

- Ter distribuição homogênea de temperatura para a seção de turbina e características satisfatórias para a partida.

Existem três tipos de câmara de combustão: tubular, tubo-anular, anular.

As tubulares, como mostra a figura 15, tem como vantagens a simplicidade de projeto e vida longa devido a baixa taxa de liberação de calor, elas podem ser de fluxo direto (*Straight-throught*) ou de fluxo reverso, sendo este o mais usado, pois são mais curtos se comparados aos combustores de fluxo direto. Quase 10% do ar entra na zona primária para ser queimado junto com o combustível, cerca de 30% a 40% do ar é utilizado para o resfriamento e o restante é utilizado na zona secundária para diluição.

Figura15: Câmara de combustão tubular [2]

As câmaras de combustão tubo-anulares, como ilustrada na figura 16, tem como sua principal vantagem a fácil manutenção, possuem a melhor distribuição em comparação as tubulares e combustão mais uniforme, também podem ser de dois tipos, de escoamento direto ou reverso.

Os combustores tubo-anulares necessitam de maior escoamento se comparados aos anulares e aos tubulares. Para gases combustíveis com baixa energia, a quantidade de ar necessário na zona primária pode ser mais do que 35% do total de ar requerido na câmara. Com isso, haverá menos ar disponível para o resfriamento da câmara.

Figura 16: Câmara de combustão tubo-anular [2]

Por último, as câmaras anulares, ilustrada na figura 17, são mais utilizadas em turbinas aeronáuticas devido a sua pequena área frontal, usualmente são de escoamento frontal, há uma menor necessidade de ar para o resfriamento, se compararmos com o combustor tubo-anular, possui uma manutenção mais complexa e tende a produzir um perfil radial e circunferencial menos favorável para combustão, comparando novamente com o combustor tubo-anular.

Figura 17: Câmara de combustão anular [2]

Porém, qualquer que seja o seu tipo, ela é projetada de modo que, todo o ar fornecido a ela, pelo compressor, somente 25% mistura-se com o combustível sendo queimado, ar primário. Os 75% restantes serão utilizados na refrigeração, sendo conhecido como ar secundário, desse total parte será usado para o resfriamento da câmara de combustão e parte para o resfriamento dos gases.

As câmaras de combustão, independente do seu tipo, possuem os seguintes elementos básicos:

-camisa
-carcaça
-difusor
-orifícios primários
-orifícios secundários (zona de resfriamento).
-orifícios de ar de diluição.
-local de instalação dos queimadores.
-local de instalação dos ignitores.
Como ilustra a figura 18.

Figura 18: Câmara de combustão [2]

A camisa ou tubo de chamas é a câmara de combustão propriamente dita, pois no seu interior é que se realizam as fases funcionais do processo de adição de calor a corrente de ar, para sua expansão, aceleração e resfriamento.

A carcaça da câmara tem a função de suporte para a camisa e no espaço existente entre elas circula o ar secundário de refrigeração, dependendo do tipo de câmara, a sua carcaça pode ser a própria carcaça do motor.

O difusor tem a função de diminuir a velocidade axial do ar fornecido pelo compressor a câmara de combustão para evitar a extinção da chama no queimador, alguns motores possuem, dependendo do tipo de câmara que usada, também a seção difusora que terá como o difusor essa mesma função.

Os orifícios primários se encontram na zona primária da câmara, onde ocorre a mistura e queima do ar com o combustível pulverizado, fornecido pelos bicos injetores de combustível ou queimadores. Eles são assim denominados, pois vão estabilizar a chama após o cancelamento da ignição, como um queimador de um fogão a gás, parte do ar que penetra na zona primária, para se misturar ao combustível, passa através dos orifícios primários, que podem ser facilmente identificados na camisa, pois ficam próximos ao local de instalação dos queimadores.

Os orifícios secundários estão localizados na zona de resfriamento da câmara, é através deles que o ar secundário para resfriamento dos gases irá penetrar, isso é necessário porque os componentes da seção de turbina (orientadores, discos e palhetas), não suportariam a alta temperatura que os gases possuem na região da queima, onde atingem

valores teóricos próximos a 2000°C, com a introdução de grande quantidade de ar de resfriamento, os gases deixarão a câmara de combustão com a temperatura entre 850°C e 950°C, que são suportáveis pela seção de turbina.

Figura 19: Distribuição do fluxo de ar na câmara de combustão [2]

Os orifícios de ar de diluição são furos de diâmetros reduzidos existentes ao longo de toda a camisa da câmara, o ar ao penetrar na camisa da câmara por esses orifícios, vai de encontro a um anteparo, formado por uma chapa metálica instalada logo abaixo dos orifícios, assim ocorre a orientação do ar de diluição criando uma película entre a camisa e a chama, para moldá-la, impedindo que essa chama toque e queime o material da camisa.

Toda câmara de combustão deve prover meios para a instalação dos atomizadores de combustível, bem como para os ignitores que irão fornecer calor, através de centelhas para o inicio da queima do combustível, atualmente estão em uso nos motores a reação dois tipos de queimadores, o simplex e o duplex. O número de queimadores usados vai depender do tamanho, tipo de câmara de combustão e do projeto do motor em questão.

Os ignitores usados nos motores e também são de dois tipos: de resistência e de descarga por capacitor, independente do tipo de ignitor e do projeto do motor, haverá sempre dois por motor, que funcionarão somente durante o ciclo de partida.

As câmaras de combustão necessitam ainda de um sistema para a drenagem de combustível residual não queimado, essa drenagem evita a formação de goma nas tubulações e bicos injetores. Outro sério risco causado por combustível residual é o perigo de explosão, pois uma tentativa de partida com combustível residual na câmara, pode acarretar uma ultrapassagem nos limites de temperatura do motor, o que implicará em varias consequências, principalmente na seção de turbinas, por isso as câmaras de combustão

possuem válvulas drenos, que drenam qualquer combustível que se acumule após cada parada do motor ou durante a tentativa de uma partida, que por qualquer motivo foi perdida.

3.3 Turbina

A turbina é um mecanismo eficiente que transformar a energia contida em um fluxo de gás a alta pressão, temperatura e velocidade em trabalho no eixo.

O fluxo de gás ao escoar através da turbina perde pressão e temperatura, expandindose e transformando a energia em trabalho.

Há dois tipos de turbinas: as turbinas radiais e as turbinas axiais, estas são utilizadas mais comumente.

A vantagem que a turbina radial possui em relação a turbina axial é que o trabalho produzido por um estágio da turbina radial equivale a dois ou mais estágios da turbina axial, outra vantagem que ela possui é um menor custo. As turbinas radiais tem geralmente uma eficiência menor do que as axiais, elas tornam-se atrativas quando os números de Reynolds são baixos ($Re = 10^5 - 10^6$), onde a eficiência delas se torna maior em comparação as axiais.

Há dois tipos de turbinas radiais as "cantilevers" e as de escoamento misto, as "cantilevers" são pouco utilizadas por causa da baixa eficiência e por ser de difícil produção, já as de escoamento misto (parte radial parte axial), são utilizadas em turbocompressores automotivos e turbinas de helicópteros.

As turbinas axiais podem ser divididas em turbinas de ação e reação. Nas turbinas de ação, toda a transformação da entalpia em energia cinética ocorre em um bocal proporcionando um escoamento de alta velocidade na entrada do rotor. Na turbina de reação a transformação da entalpia em energia cinética ocorre principalmente no bocal e o restante ocorre no rotor.

A turbina de ação, ilustrada na figura 20, é composta por um grupo de bocais seguidos de uma fileira de pás. O gás expande-se no bocal transformando a energia térmica em energia cinética, a pressão estática diminui enquanto a velocidade absoluta sofre aumento, o gás a alta velocidade choca-se com as pás do rotor convertendo assim energia cinética em trabalho no eixo.

Para obter uma grande eficiência, as velocidades das pás dos rotores devem ser pelo menos a metade da velocidade da saída do gás no bocal de entrada da turbina. Podendo ser utilizadas várias fileiras de aletas estatoras, entre as pás rotoras, para diminuir as tensões e as velocidades nas pontas das pás dos rotores.

Figura 20: Configuração de uma turbina de ação [2]

A turbina de reação, ilustrada na figura 21, é o tipo usualmente utilizado, pois tanto o bocal quanto as pás também agem como bocais de expansão. As pás estatoras agem como bocais direcionando o fluxo para as pás dos rotores.

Figura 21: Configuração turbina de reação [2]

Um esquema a seguir ilustra de forma mais didática como é composta uma turbina axial, de acordo com a figura 22.

Figura 22: Turbina axial [14]

Grande parte de turbinas axiais possuem mais de um estágio, onde cada par de rotor e aletas estatoras configura um estágio, os primeiros estágios são de ação e os finais são 50% de reação. Onde a parte de ação gera o dobro de saída em comparação aos 50% de reação.

A principal causa da perda de eficiência na turbina é o desenvolvimento da camada limite nas pás e nas paredes da turbina, podendo em certos casos causar vórtices no interior da turbina. Essa perda está ligada diretamente aos perfis das pás e do gradiente de pressão.

Outras perdas que são computadas tem sua origem no espaçamento entre as pás e a carenagem da turbina, o escoamento ao passar por esse espaço gera perda de pressão, vazamento e turbulência que dificulta o escoamento principal.

As perdas em uma turbina gira em torno de 8% a 18% das perdas totais.

Capítulo 4

4 Fatores que influenciam na geração de potência do ciclo

A turbina a gás pode ter sua geração de potência afetada pelos seguintes parâmetros:

- Perdas de carga na sucção e descarga;
- Variação da temperatura ambiente;
- Variação da umidade do ar;
- Altitude;
- Temperatura limite de operação.

4.1 Perdas de carga na sucção e descarga

Quanto maior for as perdas de carga mais irreversível se torna o sistema, influenciando em uma menor produção de potência.

4.2 Variação da temperatura ambiente

Variando a temperatura ambiente, o calor específico irá sofrer alterações, portanto, a vazão mássica irá variar em função disso, porém a vazão volumétrica permanecerá constante.

4.3 Variação da umidade do ar

Através da Equação a seguir, perceber-se que a potência da turbina a gás ideal depende de dois parâmetros como calor específico e a massa molar do ar.

O trabalho produzido por uma turbina a gás, também pode ser escrito dessa maneira:

$$W_{turbina} = cp * \left\{ T_3 * \left[1 - \frac{1}{r_p^{k-1/k}} \right] - T_1 * \left[r_p^{\frac{k-1}{k}} - 1 \right] \right\}$$
(4.1)

A potência da turbina será:

$$\dot{W}_{turbina} = \dot{m}_{ar} * cp * W_{turbina}$$
(4.2)

Considerando o ar um gás ideal, tem-se:

$$\dot{m}_{ar} = \frac{P * v * M}{R * T}$$
(5.3)

Substituindo essa equação na equação da potência:

$$\dot{W}_{turbina} = \frac{P * v * M}{R * T} * cp * W_{turbina}$$
(5.4)

Com o aumento da umidade observa-se um aumento no calor específico a pressão constante e uma diminuição na massa molar, porém o aumento do calor específico é maior que a diminuição da massa molar, acarretando no aumento do produto M*cp, consequentemente, aumento na potência. Para auxiliar o cálculo do aumento da umidade do ar deve-se utilizar uma carta psicrométrica. Como mostrado na figura 23.

Figura 23: Carta psicrométrica [12]

A figura 24, demonstra como é feita a interpretação da carta pscicrométrica.

Figura 24: Método de interpretação de uma carta psicrométrica [12]

4.4 Altitude

Com a variação da altitude varia-se também a pressão atmosférica, que influencia diretamente na massa de ar admitida pela turbina a gás, considerando a vazão volumétrica do ar aspirado constante, o aumento ou diminuição da pressão atmosférica implicará na massa de ar admitida pela turbina a gás. Isso acarreta uma maior queima de combustível, levando assim, a um aumento de potência.

4.5 Temperatura limite de operação

A temperatura limite de operação é um parâmetro utilizado, pois, a temperatura na câmara de combustão é muito elevada. Após sair da câmara, os gases vão para câmara de diluição onde sofrem um resfriamento para que então possam ter contatos com as pás e aletas das turbinas, pois, se não sofressem esse resfriamento as pás rotativas e aletas estatoras, deformariam devido à elevada tempertura dos gases.

Com o passar dos anos e após pesquisas na área metalográfica, vem sendo notado um desenvolvimento de materiais que suportam trabalhar em temperaturas de queima cada vez maiores essa otimização na câmara de combustão visa a aumentar a produção de potência. Como pode ser visto na figura 25.

Figura 25: Aumento da temperatura de queima do combustor [2]

O desenvolvimento de novos materiais, bem como sistemas de refrigeração tem acarretado no aumento da temperatura de queima turbina a gás levando-a ao aumento de eficiência. A figura 25 mostra o incremento da temperatura de queima e da capacidade de liga das pás da turbina. Como visto no gráfico desde 1950, a temperatura das pás da turbina avançou cerca de 472 °C. A importância deste aumento pode ser apreciada observando um aumento de 56 °C na temperatura de queima, podendo fornecer um aumento correspondente de 8-13% da potência produzida e melhoria de 2-4% na eficiência do ciclo simples.

Capítulo 5

5 Métodos de resfriamento do ar de admissão

Com o aumento do consumo de energia nas épocas mais quentes do ano, a necessidade de aumentar o rendimento para suprir essa demanda, é alcançado através do resfriamento do ar de admissão, uma vez que temperaturas elevadas prejudicam o rendimento das turbinas a gás. Elas são classificadas através da potência (cv ou MW) a uma condição de temperatura e altitude. Dois padrões são utilizados para classificar as turbinas são eles:

- 1. International Organization for Standardization (ISO)
- 2. National Electrical Manufactures Assosiation (NEMA)

A primeira estabelece como temperatura ambiente 288 K, 101,32 kPa a pressão de entrada e 60% de umidade relativa, a segunda define como temperatura ambiente 80°F e elevação de 1.000 metros.

Porém quando as turbinas a gás são utilizadas em países de clima tropical a temperatura ambiente do ar é das duas condições apresentadas acima, sendo necessário a customização desses equipamentos para o aumento de potência produzida, essa customização se dá por:

- Resfriamento evaporativo
- Resfriamento por ciclo termodinâmico por compressão
- Resfriamento por ciclo térmico de absorção

5.1 **Resfriamento evaporativo**

O resfriamento evaporativo é um processo endotérmico, ou seja, é necessário uma fonte de energia para que ele ocorra, normalmente, retira-se parte da energia gerada pela turbina para alimentar o processo de resfriamento.

Os maiores ganhos são obtidos em climas quentes de baixa umidade. No entanto, a eficácia do refrigerador evaporativo está limitado a temperatura ambiente de 50°F (10°C) a 60°F (16°C) e acima. Abaixo dessas temperaturas irá limitar a operação de turbinas a gás. Além disso, como a temperatura do ar de entrada diminui o potencial para a formação de

gelo na admissão aumenta. A eficácia do refrigerador evaporativo é uma medida de quão perto o resfriamento da temperatura de saída se aproxima da temperatura de bolbo húmido ambiente. Para a maioria das aplicações de refrigeradores com uma eficácia de 80% a 90% fornecem o benefício de maior economia. A queda de temperatura real realizado é uma função de ambos, do projeto do equipamento e das condições atmosféricas.

A adição de um resfriador evaporativo é economicamente justificável quando o aumento no valor da produção excede os custos iniciais e operacionais, e as condições climáticas adequadas permitem a utilização eficaz do equipamento. A qualidade da água é uma preocupação. A água deve ser tratada para remover contaminantes, tais como sal, cálcio, magnésio, alumínio, etc. Caso não seja tratada estes contaminantes funcionam como eletrólitos e podem resultar em graves corrosões dos materiais.

Existem dois tipos de sistemas de resfriamento evaporativo

- Resfriamento evaporativo por meio rígido
- Resfriamento evaporativo por nevoa

5.1.1 Resfriamento evaporativo por meio rígido

Neste processo, ar de aspiração do compressor passa através de um meio rígido que é mantido úmido. Ao passar pelo meio rígido o ar, a temperatura ambiente, evapora a água, assim sendo resfriado em um processo de saturação adiabática. Onde a água de alimentação do ciclo é estocada em um reservatório. Esta água é bombeada por uma bomba de recirculação até o meio rígido úmido, fluindo por gravidade no meio úmido que é constituído por um material fibroso e corrugado, que possui a finalidade de aumentar a superfície de contato com o ar ambiente. O meio úmido fica localizado na casa de filtros logo após o filtro de ar da turbina. Após parte d'agua ser evaporada no meio úmido com a passagem do ar, o excesso de água flui para o reservatório, onde parte é drenada para manter a concentração de materiais dissolvidos dentro do limite que minimizem a sua deposição sobre o meio úmido. As gotículas de água que foram transportadas, juntamente, como o ar resfriado, são captadas por um eliminador de gotículas, colocado após o meio úmido.

Neste método de resfriamento, que utiliza a saturação adiabática, a temperatura mínima que pode ser obtida é a temperatura de bulbo úmido do ar ambiente.

A figura 26 ilustra o diagrama esquemático do sistema evaporativo por meio rígido.

A figura 27 ilustra o sistema e os seus principais componentes.

Figura 27: Ilustração do sistema evaporativo por meio rígido e seus componentes principais [3]

5.1.2 Sistema evaporativo por nevoa

Nesse procedimento é utilizada água desmineralizada que é injetada na forma de gotículas no ar de admissão do compressor. Elas são evaporadas durante o percurso que o ar faz entre a casa de filtros e a entrada do compressor, saturando o ar e reduzindo sua temperatura até a temperatura de bulbo úmido. Este método também é conhecido na literatura industrial por *foggin*. A figura 28 irá demonstrar a representação de um diagrama esquemático desse procedimento.

Figura 28: Diagrama esquemático do resfriamento evaporativo por névoa [3]

Este sistema é instalado após o filtro de ar do compressor e tem a forma de um chuveiro com bocais com capacidade de aspergir gotículas com dimensão na ordem de mícron. Este chuveiro é conectado a bombas de alta pressão.

Este processo tem a capacidade de reduzir a temperatura do ar em até o valor mais próximo da de bulbo úmido que o sistema evaporativo por meio rígido é capaz.

O consumo de água é controlado através da quantidade de água evaporada no sistema evaporativo por nevoa não há a recirculação ou drenagem contínua da água. É possível

injetar água em excesso para que ela evapora no estágios intermediários da compressão tendo como resultado um aumento no resfriamento do ar. A utilização de água desmineralizada tem por finalidade evitar a deposição e bloqueio das passagens micrométricas dos bocais de aspersão.

A figura 29 ilustra os bocais utilizados para aspergir a água desmineralizada.

Figura 29: Bocais utilizados no resfriamento evaporativo por nevoa [2]

5.2 Resfriamento por ciclo termodinâmico por compressão

Este método de resfriamento utiliza o resfriamento realizado por um chiller, resfria uma solução de água e etileno glicol cujo qual circula em uma serpentina colocada na sucção da turbina, localizada após o filtro do compressor. O ar ambiente ao passar pela serpentina é resfriado. Onde o calor retirado do ar juntamente com o calor produzido pelo chiller, são dissipados em uma torre de resfriamento. Se esse método for utilizado em lugares onde há escassez de água, pode ser empregado trocador de calor do tipo radiador, torre seca. A figura 30 mostra o diagrama esquemático do método de resfriamento.

Figura 30: Diagrama esquemático do resfriamento por ciclo termodinâmico por compressão [3]

O ar ambiente pode ser resfriado abaixo da temperatura de bulbo úmido, assim a capacidade e o aumento da potência produzida pela turbina, através desse processo é maior pelo os dois métodos de resfriamento evaporativo. A temperatura de resfriamento do ar é limitada a 7°C para que não ocorra a formação de gelo na entrada do compressor.

O ar é arrefecido com a concentração de vapor constate, ou seja, umidade absoluta constante, até o ponto de orvalho, sendo essa parte do processo classificada como retirada do calor sensível do ar. Para temperaturas inferiores ao ponto de orvalho, o processo continua condensando o vapor de água do ar, que durante o processo fica na condição de vapor saturado, esse processo é classificado como retirada do calor latente do ar. Essa retirada de calor latente tem como efeito a condensação de parte do vapor d'agua presente no ar, resultando no aumento de carga de refrigeração em comparação com a retirada de calor sensível. Sendo as gotículas d'agua presentes no ar retiradas pelo eliminador de gotículas. O processo de resfriamento será mostrado na figura 31.

Figura 31: Representação na carta psicrométrica do ar a 30°C com 40% de umidade relativa, sendo resfriado a 8°C [3]

5.3 Resfriamento por ciclo térmico de absorção

Este processo se assemelha ao resfriamento por ciclo por compressão, sendo a diferença entre os dois ciclos estar presente no fato de o ciclo térmico de absorção utilizar um chiller de absorção enquanto aquele usa um chiller de compressão

O fluido de trabalho do chiller de absorção, a água é evaporada no evaporador de baixa pressão e pressão, arrefecendo a água gelada que segue para a serpentina, localizada antes do compressor. O Gradiente de concentração de água entre o evaporador e o absorvedor faz com que o vapor que se encontra no evaporador flua para o absorvedor. No absorvedor a água é absorvida em uma solução de brometo de lítio (LiBr) e água, a absorção dilui esta solução, sendo coletada no fundo do absorvedor. A pressão do absorvedor é igual ao do evaporador, sendo a solução bombeada para o gerador, onde sua pressão sofre um aumento. A energia elétrica para a elevação de pressão é menor se comparado ao ciclo de

compressão, pois a solução é um líquido possuindo um volume específico pequeno. No gerador a solução de LiBr e água sofre evaporação, o vapor d'agua obtido vai para o condensador, onde sofre condensação pelo resfriamento, que é a água do resfriamento que circula por uma torre de resfriamento. Esta água flui, por gradiente de pressão, para o evaporador, evaporando novamente pelo contato com a água gelada da serpentina, reiniciando assim o ciclo. O calor extraído ao longo do ciclo é retirado do sistema de resfriamento no condensador e no absorvedor.

É necessário a instalação de uma caldeira de recuperação na exaustão da turbina, podendo assim ser aproveitada a energia térmica dos gases de exaustão para alimentar o chiller de absorção.

A figura 32 ilustra o diagrama esquemático do processo citado acima.

Figura 32: Diagrama esquemático do resfriamento por ciclo térmico de absorção [3]

Capítulo 6

6 Equações para estudo de caso

Durante a realização do ciclo, o escoamento do fluido de trabalho, o ar, será em regime permanente. A pressão será um parâmetro constante e terá seu valor fixado em 1atm.

Neste capítulo, serão determinadas as equações que foram utilizadas para cada um dos seguintes casos:

- Ciclo ideal considerando o calor específico constante;

- Ciclo real considerando o calor específico constante;
- Ciclo ideal considerando o calor específico variável;

- Ciclo real considerando o calor específico variável

A separação dos ciclos ideais em quatro casos foi feita, pois os ciclos ideal e real que consideram o calor específico constante, ciclos estes presentes na literatura acadêmica, apresentam certo conservadorismo. Sendo notado através dos cálculos realizados, que os valores dos parâmetros como: rendimento térmico, potência líquida produzida e taxa de calor aportado pelo ciclo, tinham uma ligeira diferença em comparação aos mesmos dados fornecidos pelo catálogo do fabricante. Então foram utilizados os ciclos considerando que o valor do calor específico pudesse variar com temperatura do ar ambiente. Assim chegando em resultados próximos aos dos dados retirados do catálogo do fabricante.

A utilização do ciclo ideal, seja ele considerando o c_p variável ou constante, foi feita para estudar o comportamento do ciclo, quanto ao processo de resfriamento do ar de aspiração, e para comparação com o ciclo real, assim podendo ter uma visão se o ciclo real se aproxima do ciclo ideal ou se o real possui uma irreversibilidade muito grande.

A seguir serão demonstrados os cálculos que realizados, para cada um dos ciclos citados acima. Onde através deles foi possível a construção de gráficos a realização da análise. Vale frisar que não foi considerada a temperatura de bulbo úmido tão pouco a umidade relativa do ar, pois, o catálogo do fabricante considerou o ar seco. Sendo seguidas as condições ISO, também foi fixada a temperatura de combustão da câmara de combustão. Isso foi feito, uma vez que foram atendidas as condições ISO, a temperatura de combustão é tida como temperatura de projeto, onde ela seria a temperatura limite em que os materiais como pás rotoras e estatoras da turbina conseguiriam operar sem serem prejudicadas.

A demonstração da rotina matemática elaborado no software EES, tem como objetivo esclarecer como os resultados obtidos, que serão apresentados no capítulo 7, foram calculados. Onde são descriminados todos os processos do ciclo Brayton aberto:

- Compressão
- Combustão
- Exaustão

Assim como as propriedades que deles dependem, como entalpia, entropia, temperatura e pressão.

6.1 Ciclo ideal considerando o calor específico constante

Compressão:

$$\frac{\mathbf{P}_2}{\mathbf{P}_1} = \mathbf{R}_\mathbf{p} \tag{6.0}$$

$$k = 1,4$$
 (6.1)

Onde k é a razão entre os calores específicos à pressão constante e à volume constante.

$$\frac{T_{2s}}{T_1} = R_p^{\frac{k-1}{k}}$$
(6.2)

$$s_{2s} = s_1$$
 (6.3)

No processo ideal, a compressão é isentrópica.

$$\eta_{\text{compressão}} = 100\% \tag{6.4}$$

Admitindo que o rendimento isentrópico do compressor é 100%.

$$\dot{W}_{\text{compressão}} = \dot{m}_{\text{ar}} * (h_{2s} - h_1)$$
(6.5)

Combustão:

$$P_3 = P_2 \tag{6.6}$$

$$\dot{Q}_{entra} = \dot{m}_{ar} * (h_3 - h_{2s})$$
 (6.7)

$$\dot{Q}_{entra} = \dot{m}_{combustivel} * PCI_{combustivel}$$
 (6.8)

$$Q_{\text{entra}} = \frac{\dot{Q}_{\text{entra}}}{\dot{m}_{\text{ar}}}$$
(6.9)

Expansão:

$$\frac{P_3}{P_4} = R_p \tag{6.9}$$

$$\frac{T_3}{T_{4s}} = R_p^{\frac{k-1}{k}}$$
(6.10)

$$s_{4s} = s_3$$
 (6.11)

Nos ciclos ideias a expansão é considerada isentrópica

$$\eta_{\text{turbina}} = 100\% \tag{6.12}$$

No ciclo ideal o rendimento isentrópico da turbina é considerada 100%.

$$\dot{W}_{turbina} = \dot{m}_{ar} * (h_3 - h_{4s})$$
 (6.13)

Potência líquida:

$$\dot{W}_{liquida} = \dot{W}_{turbina} - \dot{W}_{compressão}$$
 (6.14)

Rendimento do ciclo:

$$\eta_{t} = \frac{\dot{W}_{liquida}}{\dot{Q}_{entra}}$$
(6.15)

Consumo específico do combustível:

$$C_{esp} = \frac{3600* \dot{m}_{combustivel}}{\dot{W}_{liquida}}$$
(6.16)

Taxa de calor em função do PCI:

$$Taxa_{calor,PCI} = C_{esp} * PCI_{combustivel}$$
(6.17)

6.2 Ciclo real considerando o calor específico constante

Compressão:

$$\frac{P_2}{P_1} = R_p$$
 (6.18)

$$k = 1,4$$
 (6.19)

$$\frac{T_{2s}}{T_1} = R_p^{\frac{k-1}{k}}$$
(6.20)

$$\eta_{\text{compressão}} = 1 - \left(0.04 + \frac{R_{p} - 1}{150}\right)$$
 (6.21)

Foi utilizada a fórmula em função da razão de compressão, pois o fabricante não informou no seu catálogo as eficiências isentrópicas do compressor e da turbina.

$$\eta_{\text{compressão}} = \frac{T_{2s} - T_1}{T_{2r} - T_1}$$
(6.22)

Onde:

$$\dot{W}_{compressão} = \dot{m}_{ar} * (h_{2r} - h_1)$$
 (6.23)

Combustão:

$$P_3 = P_2$$
 (6.24)

$$\dot{Q}_{entra} = \dot{m}_{ar} * (h_3 - h_{2r})$$
 (6.25)

$$\dot{Q}_{entra} = \dot{m}_{combustivel} * PCI_{combustivel}$$
 (6.26)

$$Q_{entra} = \frac{\dot{Q}_{entra}}{\dot{m}_{ar}}$$
(6.27)

Expansão:

$$\frac{P_3}{P_4} = R_p \tag{6.28}$$

$$\frac{T_3}{T_{4s}} = R_p^{\frac{k-1}{k}}$$
 (6.29)

$$\eta_{\text{turbina}} = 1 - \left(0.03 + \frac{R_{\text{p}} - 1}{180}\right)$$
 (6.30)

$$\eta_{\text{turbina}} = \frac{T_3 - T_{4r}}{T_3 - T_{4s}}$$
(6.31)

$$\dot{W}_{turbina} = \dot{m}_{ar} * (h_3 - h_{4r})$$
 (6.32)

Potência líquida:

$$\dot{W}_{liquida} = \dot{W}_{turbina} - \dot{W}_{compressão}$$
(6.33)

Rendimento do ciclo:

$$\eta_{t} = \frac{\dot{W}_{liquida}}{\dot{Q}_{entra}}$$
(6.34)

Consumo específico do combustível:

$$C_{esp} = \frac{3600 * \dot{m}_{combustivel}}{\dot{W}_{liquida}}$$
(6.35)

Taxa de calor em função do PCI:

$$Taxa_{calor,PCI} = C_{esp} * PCI_{combustivel}$$
(6.36)

6.3 Ciclo ideal considerando o calor específico variável

Compressão:

$$k_1 = \frac{cp_{ar,1}}{cv_{ar,1}}$$
(6.37)

$$\frac{P_2}{P_1} = R_p$$
 (6.38)

$$\frac{T_{2s}}{T_1} = R_p^{\frac{k_1 - 1}{k_1}}$$
(6.39)

$$s_{2s} = s_1$$
 (6.40)

$$\eta_{\text{compressão}} = 100\% \tag{6.41}$$

$$\dot{W}_{\text{compressão}} = \dot{m}_{\text{ar}} * (h_{2s} - h_1)$$
(6.42)

Combustão:

$$\mathbf{P}_3 = \mathbf{P}_2 \tag{6.43}$$

$$k_3 = \frac{cp_{gás,3}}{cv_{gás,3}} \tag{6.44}$$

$$\dot{Q}_{entra} = \dot{m}_{ar} * cp_{gas,3} * (T_3 - T_{2s})$$
 (6.45)

$$\dot{Q}_{entra} = \dot{m}_{combustivel} * PCI_{combustivel}$$
 (6.46)

$$Q_{\text{entra}} = \frac{\dot{Q}_{\text{entra}}}{\dot{m}_{\text{ar}}}$$
(6.47)

Expansão:

$$\frac{P_3}{P_4} = R_p$$
 (6.48)

$$\frac{T_3}{T_{45}} = R_p^{\frac{k_3 - 1}{k_3}}$$
(6.49)

$$s_{4s} = s_3$$
 (6.50)

$$\eta_{\text{turbina}} = 100\% \tag{6.51}$$

$$\dot{W}_{turbina} = \dot{m}_{ar} * (h_3 - h_{4s})$$
 (6.52)

Potência líquida:

$$\dot{W}_{líquida} = \dot{W}_{turbina} - \dot{W}_{compressão}$$
 (6.53)

Rendimento do ciclo:

$$\eta_{\rm ciclo} = \frac{\dot{W}_{\rm líquida}}{\dot{Q}_{\rm entra}} \tag{6.54}$$

Consumo específico do combustível:

$$C_{esp} = \frac{3600* \dot{m}_{combustivel}}{\dot{W}_{liquida}}$$
(6.55)

Taxa de calor em função do PCI:

$$Taxa_{calor,PCI} = C_{esp} * PCI_{combustivel}$$
(6.56)

6.4 Ciclo real considerando o calor específico variável

Compressão:

$$k_1 = \frac{cp_{ar,1}}{cv_{ar,1}}$$
(6.57)

$$\frac{P_2}{P_1} = R_p$$
 (6.58)

$$\frac{T_{2s}}{T_1} = R_p^{\frac{k_1 - 1}{k_1}}$$
 (6.59)

$$\eta_{\text{compressão}} = 1 - \left(0.04 + \frac{R_{p} - 1}{150}\right)$$
 (6.60)

$$\eta_{\text{compressão}} = \frac{T_{2s} - T_1}{T_{2r} - T_1}$$
(6.61)

$$\dot{W}_{\text{compressão}} = \dot{m}_{\text{ar}} * (h_{2r} - h_1)$$
(6.62)

Combustão:

$$\mathbf{P}_3 = \mathbf{P}_2 \tag{6.63}$$

$$k_3 = \frac{c p_{g_{as,3}}}{c v_{g_{as,3}}}$$
(6.64)

$$\dot{Q}_{entra} = \dot{m}_{ar} * cp_{gas,3} * (T_3 - T_{2r})$$
 (6.65)

$$\dot{Q}_{entra} = \dot{m}_{combustivel} * PCI_{combustivel}$$
 (6.66)

$$Q_{entra} = \frac{\dot{Q}_{entra}}{\dot{m}_{ar}}$$
(6.67)

<u>Expansão:</u>

$$\frac{P_3}{P_4} = R_p \tag{6.68}$$

$$\frac{T_3}{T_{4S}} = R_p^{\frac{k_3 - 1}{k_3}}$$
(6.69)

$$\eta_{\text{turbina}} = 1 - \left(0,03 + \frac{R_{\text{p}} - 1}{180}\right)$$
(6.70)

$$\eta_{\text{turbina}} = \frac{T_3 - T_{4r}}{T_3 - T_{4s}}$$
(6.71)

$$\dot{W}_{turbina} = \dot{m}_{ar} * (h_3 - h_{4r})$$
 (6.72)

Potência líquida:

$$\dot{W}_{liquida} = \dot{W}_{turbina} - \dot{W}_{compressão}$$
 (6.73)

Rendimento do ciclo:

$$\eta_{t} = \frac{\dot{W}_{liquida}}{\dot{Q}_{entra}}$$
(6.74)

Consumo específico do combustível:

$$C_{esp} = \frac{3600 * \dot{m}_{combustivel}}{\dot{W}_{liquida}}$$
(6.75)

Taxa de calor em função do PCI:

$$Taxa_{calor,PCI} = C_{esp} * PCI_{combustivel}$$
(6.76)

Capítulo 7

7 **Resultados apresentados**

Foram utilizados como referência três modelos de turbinas a gás, escolhidos do catálogo da Siemens. São eles:

- SGT 100
- SGT 200
- SGT 300

Todos os modelos, segundo informação do catálogo, são utilizados em ciclo simples e os dados fornecidos foram baseados na condição ISO e utilizam o ar seco como padrão.

Os dados retirados do catálogo foram:

- Potência líquida produzida (W_{líq})
- Eficiência térmica (η_t)
- Razão de compressão (R_p)
- Vazão mássica do ar (mar)
- Temperatura de exaustão (T₄)

Estes mesmo valores foram utilizados como dados de entrada para os cálculos, mostrados no capítulo anterior, como ilustra a figura 33, os quais foram divididos em ciclo ideal considerando o calor específico constante c_p e com os ciclos ideal e real com o c_p variável.

Através dos cálculos demonstrados no capítulo anterior e dos dados, citados acima, retirados do catálogo do fabricante, os resultados obtidos e analisados para cada um dos quatro ciclos propostos foram:

- Rendimento térmico;
- Potência produzida;
- Taxa de calor aportado;
- Vazão mássica do combustível;
- Taxa de calor em função do poder calorífico inferior do combustível;
- Trabalho consumido pelo compressor
A escolha dos parâmetros acima citados foi realizada, pois de acordo com as literaturas consultadas para a realização deste trabalho, o resfriamento do ar ambiente acarreta no incremento do rendimento do ciclo. A primeira análise a ser feita é a relação que o rendimento tem entre a taxa de calor aportado e a produção de potência líquida, como esses critérios se comportam com o a variação de temperatura.

Como o trabalho consumido pelo compressor influencia, diretamente, na potência líquida produzida, será analisado o como o arrefecimento do ar ambiente pode colaborar no trabalho consumido pelo compressor.

A vazão mássica do combustível e a taxa de calor em função do poder calorífico inferior do combustível estão diretamente ligadas à taxa de calor aportado, sendo assim o estudo do comportamento destes critérios com o arrefecimento do ar, pode mostrar como elas afetam a taxa de calor aportado.

Pode-se notar que todos os parâmetros tem uma correlação com o rendimento.

SGT-100

Geração de energia 5,40 MW(e)

- Combustível: Gás natural*
- Freqüência: 50/60Hz
- Eficiência elétrica: 31,0%
- Taxa de calor: 11.613 kJ/kWh
- Taxa de calor: 11.613 kJ/kWh
 Taxa de calor: 1.418 kJ/kWh
 Rotação da turbina: 17.384 rpm
 Rotação da turbina: 11.053 rpm
- 15,6:1
- Fluxo de gás de escape: 20,6 kg/s
- Temperatura: 531°C
- Emissões de NO_x (com DLE, corrigidas para 15% O₂ seco): ≤ 15 ppmV

Acionamento mecânico 5,70 MW

- Combustível: Gás natural*
- Eficiência: 32,9%
- Taxa de calor: 10.948 kJ/kWh
- Rotação da turbina: 13.000 rpm
- Coeficiente de pressão do compressor: 14.9:1
- Fluxo de gás de escape: 19,7 kg/s
- Temperatura: 543°C
- para 15% O₂ seco): ≤ 25 ppmV

SGT-200

Geração de energia 6,75 MW(e)

- Combustível: Gás natural*
- Freqüência: 50/60Hz
- Eficiência elétrica:31,5%
- Taxa de calor: 1.418 kJ/kWh
- Coeficiente de pressão do compressor:
 Coeficiente de pressão do compressor:
 Coeficiente de pressão do compressor: 12,2:1
 - Fluxo de gás de escape: 29,3 kg/s
 - Temperatura: 466°C
 - Emissões de NO_x (com DLE, corrigidas para 15% O₂ seco): ≤ 25 ppmV

Acionamento mecânico 7,68 MW

- Combustível: Gás natural*
- Eficiência: 33,0%
- Taxa de calor: 10.906 kJ/kWh Rotação da turbina: 10.950 rpm
 Confiziente da
- Coeficiente de pressão do compressor: 12,3:1
- Fluxo de gás de escape: 29,5 kg/s
- Temperatura: 489°C
- Emissões de NO_x (com DLE, corrigidas
 Emissões de NO_x (com DLE, corrigidas para 15% O₂ seco): ≤ 25 ppmV

SGT-300

- Geração de energia 7,90 MW(e)
- Combustível: Gás natural*
- Freqüência: 50/60Hz
- Eficiência elétrica: 30,6%
- Taxa de calor: 11.532 kJ/kWh
- Rotação da turbina: 14.010 rpm
 - 13,7:1
- Fluxo de gás de escape: 29,8 kg/s
- Temperatura: 537°C
- Emissões de NO, (com DLE, corrigidas para 15% O2 seco): ≤ 15 ppmV

Acionamento mecânico 8,2 MW

- Combustível: Gás natural*
- Eficiência: 34,6%
- Taxa de calor: 10.400 kJ/kWh
- Rotação da turbina: 11.500 rpm
- Coeficiente de pressão do compressor: 13, 3:1
- Fluxo de gás de escape: 29,0 kg/s
- Temperatura: 498°C
 - para 15% O₂ seco): ≤ 15 ppmV

Figura 33: Representação dos dados de catálogo.

57

7.1 Turbina SGT – 100

Turbina SGT – 100 Dados de catálogo: $W_{liq} = 5700 \text{ kW}$ $\eta_t = 32,9\%$ $R_p = 14,9$ $\dot{m}_{ar} = 19,7 \text{ kg/s}$ $T_4 = 543 \text{ °C}$

A tabela 1 demonstra os resultados obtidos do rendimento, para cada faixa de temperatura do ar admitido, para cada um dos ciclos propostos.

Tabela 1 – Tabela	que	relaciona	os	rendimentos	dos	4	ciclos	para	cada	valor	de
temperatura do ar a	absorv	vido.									

T1	k cte ideal	k cte	cp variável Ideal	cp variável real
(K)	(%)	real (%)	(%)	(%)
278	57,56	45,94	44,08	34,35
279	57,56	45,9	44,07	34,3
280	57,56	45,87	44,07	34,24
281	57,56	45,83	44,06	34,19
282	57,56	45,79	44,05	34,14
283	57,56	45,75	44,05	34,08
284	57,57	45,71	44,04	34,02
285	57,57	45,67	44,03	33,97
286	57,57	45,63	44,02	33,91
287	57,57	45,59	44,02	33,85
288	57,57	45,55	44,01	33,8
289	57,57	45,51	44	33,74
290	57,57	45,47	43,99	33,68
291	57,58	45,43	43,99	33,62
292	57,58	45,39	43,98	33,56
293	57,58	45,34	43,97	33,5
294	57,58	45,3	43,96	33,44
295	57,58	45,26	43,96	33,38
296	57,58	45,21	43,95	33,31
297	57,58	45,17	43,94	33,25
298	57,59	45,13	43,93	33,19
299	57,59	45,08	43,92	33,12
300	57,59	45,04	43,91	33,06
301	57,59	44,99	43,91	32,99
302	57,59	44,95	43,9	32,93

303	57,59	44,9	43,89	32,86
304	57,59	44,86	43,88	32,79
305	57,6	44,81	43,87	32,73
306	57,6	44,76	43,86	32,66
307	57,6	44,72	43,85	32,59
308	57,6	44,67	43,85	32,52
309	57,6	44,62	43,84	32,45
310	57,6	44,57	43,83	32,38
311	57,6	44,53	43,82	32,31
312	57,6	44,48	43,81	32,24
313	57,61	44,43	43,8	32,17
314	57,61	44,38	43,79	32,1
315	57,61	44,33	43,78	32,02
316	57,61	44,28	43,77	31,95
317	57,61	44,23	43,76	31,87
318	57,61	44,17	43,75	31,8
319	57,61	44,12	43,74	31,72
320	57,61	44,07	43,73	31,65
321	57,61	44,02	43,72	31,57
322	57,62	43,96	43,71	31,49
323	57,62	43,91	43,7	31,41
324	57,62	43,86	43,69	31,34
325	57,62	43,8	43,68	31,26
326	57,62	43,75	43,67	31,18
327	57,62	43,69	43,66	31,1
328	57,62	43,64	43,65	31,01

Figura 34: Gráfico que mostra os rendimentos dos ciclos

Através do gráfico da figura 34, observa-se que a temperatura de admissão no compressor influencia num acréscimo do rendimento no ciclo ideal considerando o c_p do ar constante, porém nos demais ciclos representados, como o ciclo ideal considerando o c_p constante, o ciclo ideal considerando o c_p do ar variável e o ciclo real considerando o c_p do ar variável, verificou-se um decréscimo nos rendimentos desses ciclos.

Também através do mesmo gráfico visto acima nota-se diferença entre os rendimentos dos ciclos que consideram o c_p do ar constante, ciclos estes que estão presentes nas literaturas voltadas para área de Termodinâmica, e dos ciclos que consideram o calor específico do ar variável, após sofrerem o arrefecimento do ar de admissão. Com isso, é visível que aqueles ciclos resultam em valores distantes dos valores reais, que existe uma margem de erro a ser considerada.

Enquanto os ciclos que consideram o c_p do ar constante como ciclo ideal possui um déficit de 0,06%, devido ao acréscimo de rendimento visto no gráfico, o ciclo ideal possui um ganho de 2,3% em seu rendimento.

Os ciclos que consideram que o c_p do ar varia junto com sua temperatura como ciclo ideal possui um aumento de 0,43% em seu rendimento, o ciclo real possui um aumento de 3,34% em seu rendimento.

Os pequenos incrementos nos rendimentos vistos são justificáveis pelos seguintes fatos:

- Foi adotado o ar seco, ou seja, umidade relativa 0%. Como foi demonstrado no capítulo 4, a variação positiva de umidade acarreta em um ganho de potência e como consequência aumento do rendimento do ciclo

- A variação de temperatura em 1K faz com que as variações de entalpia do ciclo sejam pequenas, tendo como efeito a variação pequena dos trabalhos do compressor e da turbina, assim como a quantidade aportada pelo ciclo.

A tabela 2 demonstra os valores calculados, para cada um dos ciclos propostos, da potência líquida produzida.

ai uc ubso	Jiçao			
T1	k cte ideal	k cte real	cp variável	cp variável
(K)	(kW)	(kW)	Ideal (kW)	real (kW)
278	10594	8153	8956	6552
279	10567	8124	8932	6522
280	10540	8095	8907	6492
281	10513	8065	8883	6462
282	10486	8036	8858	6432
283	10458	8007	8834	6402
284	10431	7977	8809	6373
285	10404	7948	8785	6343
286	10377	7919	8760	6312
287	10350	7889	8736	6282
288	10323	7860	8711	6252
289	10295	7830	8687	6222
290	10268	7801	8663	6192
291	10241	7771	8638	6162
292	10214	7742	8614	6132
293	10186	7712	8589	6101
294	10159	7682	8565	6071
295	10132	7653	8541	6041
296	10104	7623	8516	6010
297	10077	7593	8492	5980
298	10050	7564	8467	5950
299	10022	7534	8443	5919
300	9995	7504	8419	5889
301	9968	7474	8394	5858
302	9940	7445	8370	5828
303	9913	7415	8346	5797
304	9885	7385	8321	5767
305	9858	7355	8297	5736
306	9830	7325	8273	5706
307	9803	7295	8248	5675
308	9775	7265	8224	5644
309	9748	7235	8200	5614
310	9720	7205	8176	5583
311	9693	7175	8151	5552
312	9665	7145	8127	5522
313	9638	7115	8103	5491
314	9610	7085	8078	5460
315	9583	7054	8054	5429
316	9555	7024	8030	5399
317	9527	6994	8006	5368
318	9500	6964	7982	5337

Tabela 2 – Valores de potência líquida produzida para cada valor da temperatura do ar de absorção

319	9472	6933	7957	5306
320	9444	6903	7933	5275
321	9417	6873	7909	5245
322	9389	6842	7885	5214
323	9361	6812	7861	5183
324	9334	6782	7836	5152
325	9306	6751	7812	5121
326	9278	6721	7788	5090
327	9250	6690	7764	5059
328	9223	6660	7740	5029

Figura 35: Gráfico que relaciona potência líquida gerada nos ciclos

Na figura 35 é o mais relevante de todos, pois, o principal objetivo que a indústria de geração de energia vem tentando alcançar é o aumento da produção de potência. A pequena variação do rendimento constatado anteriormente tem sua importância, porém a variação de potência líquida, que influencia diretamente no rendimento de um ciclo, demonstra ser diretamente proporcional à variação da temperatura de admissão do compressor.

Porém, de maneira inversa esse aumento no valor da temperatura implica em uma diminuição da densidade do ar, acarretando na queda da massa de ar captada pelo compressor, deixando a combustão do ciclo pobre na relação ar/combustível defasando a produção de potência e consequente o rendimento.

O ganho para cada ciclo com o resfriamento do ar é:

- Para o ciclo ideal considerando o c_p constante o ganho de potência líquida produzida é de 1371 kW e o incremento obtido é de 13%.

- Para o ciclo real considerando o c_p constante o ganho de potência líquida produzida é de 1493 kW e o incremento obtido é de 18,31%.

- Para o ciclo ideal considerando o c_p variável o ganho de potência líquida produzida é de 1216 kW e o incremento obtido é de 13,6%.

- Para o ciclo real considerando o c_p variável o ganho de potência líquida produzida é de 1523 kW e o incremento obtido é de 23,24%.

Na tabela 3são apresentados os valores, para cada um dos quatro ciclos, referente ao calor aportado para cada faixa de temperatura ambiente.

T1	k cte ideal	k cte real	cp variável	cp variável real
(K)	(kJ/s)	(kJ/s)	Ideal (kJ/s)	(kJ/s)
278	18406	17747	19892	18682
279	18359	17698	19841	18627
280	18311	17649	19791	18572
281	18263	17600	19741	18516
282	18216	17550	19690	18461
283	18168	17501	19640	18406
284	18121	17452	19589	18351
285	18073	17403	19539	18296
286	18025	17354	19489	18240
287	17977	17304	19438	18185
288	17930	17255	19388	18130
289	17882	17206	19338	18075
290	17834	17156	19288	18019
291	17786	17107	19238	17964
292	17739	17058	19187	17909
293	17691	17008	19137	17854
294	17643	16959	19087	17798
295	17595	16909	19037	17743
296	17547	16860	18987	17688
297	17499	16810	18937	17632
298	17452	16761	18887	17577
299	17404	16711	18837	17522
300	17356	16661	18787	17466
301	17308	16612	18737	17411
302	17260	16562	18687	17356
303	17212	16513	18637	17300
304	17164	16463	18587	17245

Tabela 3 – Valores de calor aportado para cada valor da temperatura do ar de absorção

305	17116	16413	18537	17190
306	17068	16363	18487	17135
307	17019	16313	18438	17079
308	16971	16264	18388	17024
309	16923	16214	18338	16969
310	16875	16164	18288	16913
311	16827	16114	18239	16858
312	16779	16064	18189	16803
313	16731	16014	18139	16747
314	16682	15964	18089	16692
315	16634	15914	18040	16637
316	16586	15864	17990	16582
317	16538	15814	17941	16526
318	16489	15764	17891	16471
319	16441	15714	17841	16416
320	16393	15664	17792	16361
321	16344	15614	17742	16306
322	16296	15564	17693	16250
323	16248	15513	17643	16195
324	16199	15463	17594	16140
325	16151	15413	17545	16085
326	16103	15363	17495	16030
327	16054	15312	17446	15975
328	16006	15262	17396	15920

Figura 36: Taxa de calor aportado dos ciclos

A figura 36 evidencia para os quatro ciclos que com a diminuição da temperatura ambiente maior será a taxa de calor aportado por eles.

No processo da compressão, o ar admitido é comprimido e lhe é adicionado temperatura como consequência deste processo, porém, o presente trabalho estuda o arrefecimento do mesmo na entrada do compressor.

Ao sofrer o arrefecimento e posteriormente a compressão, sua temperatura após esses dois procedimentos irá sofrer um incremento, mas se comparado ao ar sem ter sofrido o resfriamento, o incremento sofrido é menor, desta maneira a temperatura de queima da mistura ar/combustível terá que ser elevada, mas como foi explicado anteriormente, neste trabalho a temperatura de queima foi calculada para condição ISO, condição esta tida como de projeto, e fixada. Foi observado o aumento da quantidade de calor aportado em cada ciclo, e para que isso ocorra, a vazão mássica de combustível também irá aumentar, o que será mostrado na figura 37, o volume de combustível irá aumentar, aumentando também sua *heat rate* (taxa de calor).

A diferença entre as figuras 36 e 38 é o seu conceito, que é basicamente o quanto essa máquina térmica recebe de energia, em forma de calor, e consegue transformar, de maneira eficiente, em energia elétrica. No presente trabalho ela é chamada de taxa de calor em função do PCI do combustível (poder calorífico inferior) e será demonstrada na figura 38. Tendo como efeito a quantidade de calor aportado maior e com isso elevando a taxa de potência líquida produzida.

Na tabela 4 são demonstrados os valores calculados, para os quatro ciclos propostos, da vazão mássica do combustível para cada faixa de temperatura ambiente.

ai aspirau)			
T1	K cte ideal	K cte real	cp variável Ideal	cp variável Real
(K)	(kg/s)	(kg/s)	(kg/s)	(kg/s)
278	0,3678	0,3546	0,4216	0,4119
279	0,3668	0,3536	0,4207	0,4109
280	0,3659	0,3526	0,4198	0,41
281	0,3649	0,3516	0,4189	0,409
282	0,364	0,3507	0,4181	0,4081
283	0,363	0,3497	0,4172	0,4071
284	0,362	0,3487	0,4163	0,4062
285	0,3611	0,3477	0,4154	0,4052
286	0,3601	0,3467	0,4146	0,4043
287	0,3592	0,3457	0,4137	0,4033

Tabela 4 – Valores de vazão mássica do combustível para cada valor da temperatura do ar aspirado

288	0,3582	0,3448	0,4128	0,4024
289	0,3573	0,3438	0,412	0,4014
290	0,3563	0,3428	0,4111	0,4005
291	0,3554	0,3418	0,4102	0,3995
292	0,3544	0,3408	0,4093	0,3986
293	0,3535	0,3398	0,4085	0,3976
294	0,3525	0,3388	0,4076	0,3967
295	0,3516	0,3378	0,4067	0,3957
296	0,3506	0,3369	0,4058	0,3947
297	0,3496	0,3359	0,405	0,3938
298	0,3487	0,3349	0,4041	0,3928
299	0,3477	0,3339	0,4032	0,3919
300	0,3468	0,3329	0,4023	0,3909
301	0,3458	0,3319	0,4015	0,39
302	0,3448	0,3309	0,4006	0,389
303	0,3439	0,3299	0,3997	0,3881
304	0,3429	0,3289	0,3988	0,3871
305	0,342	0,3279	0,398	0,3862
306	0,341	0,3269	0,3971	0,3852
307	0,34	0,3259	0,3962	0,3843
308	0,3391	0,3249	0,3953	0,3833
309	0,3381	0,324	0,3945	0,3824
310	0,3372	0,323	0,3936	0,3814
311	0,3362	0,322	0,3927	0,3805
312	0,3352	0,321	0,3918	0,3795
313	0,3343	0,32	0,391	0,3786
314	0,3333	0,319	0,3901	0,3776
315	0,3324	0,318	0,3892	0,3767
316	0,3314	0,317	0,3883	0,3757
317	0,3304	0,316	0,3875	0,3748
318	0,3295	0,315	0,3866	0,3738
319	0,3285	0,314	0,3857	0,3729
320	0,3275	0,313	0,3848	0,3719
321	0,3266	0,312	0,384	0,371
322	0,3256	0,311	0,3831	0,37
323	0,3246	0,31	0,3822	0,3691
324	0,3237	0,309	0,3813	0,3681
325	0,3227	0,3079	0,3804	0,3671
326	0,3217	0,3069	0,3796	0,3662
327	0,3208	0,3059	0,3787	0,3652
328	0,3198	0,3049	0,3778	0,3643

Figura 37: Vazão mássica do combustível dos ciclos

A tabela 5 para cada valor da temperatura ambiente os valores calculados, para cada um dos ciclos propostos, da taxa de calor em função do poder calorífico inferior, PCI.

Tabela	5 –	Valores	da tax	a de	calor	em	função	do	PCI	do	combustível	para	cada	valor	da
temper	atura	a do ar a	spirado).											

T1	k cte ideal	k cte real	cp variável Ideal	cp variável real
(K)	(kJ/kW-h)	(kJ/kW-h)	(kJ/kW-h)	(kJ/kW-h)
278	6255	7836	8481	11327
279	6255	7842	8487	11352
280	6254	7849	8492	11378
281	6254	7856	8498	11404
282	6254	7862	8504	11430
283	6254	7869	8509	11457
284	6254	7876	8515	11484
285	6254	7882	8521	11511
286	6253	7889	8527	11539
287	6253	7896	8533	11567
288	6253	7903	8539	11595
289	6253	7910	8545	11624
290	6253	7918	8550	11653
291	6253	7925	8556	11682
292	6252	7932	8562	11712
293	6252	7939	8568	11742
294	6252	7947	8574	11772

295	6252	7954	8580	11803
296	6252	7962	8587	11834
297	6252	7970	8593	11865
298	6252	7977	8599	11897
299	6251	7985	8605	11929
300	6251	7993	8611	11962
301	6251	8001	8617	11995
302	6251	8009	8624	12028
303	6251	8017	8630	12062
304	6251	8025	8636	12096
305	6251	8034	8642	12131
306	6250	8042	8649	12166
307	6250	8051	8655	12201
308	6250	8059	8661	12237
309	6250	8068	8668	12273
310	6250	8076	8674	12310
311	6250	8085	8681	12347
312	6250	8094	8687	12384
313	6249	8103	8694	12422
314	6249	8112	8700	12461
315	6249	8121	8707	12500
316	6249	8131	8714	12539
317	6249	8140	8720	12579
318	6249	8149	8727	12620
319	6249	8159	8734	12661
320	6249	8169	8740	12702
321	6248	8178	8747	12744
322	6248	8188	8754	12787
323	6248	8198	8761	12830
324	6248	8208	8768	12873
325	6248	8219	8775	12917
326	6248	8229	8782	12962
327	6248	8239	8789	13007
328	6248	8250	8796	13053

Figura 38: Taxa de Calor considerando o PCI do combustível dos ciclos

A tabela 6 demonstra para cada valor da temperatura ambiente os valores calculados do trabalho que é consumido pelo compressor, para cada um dos ciclos.

Tabela 6 – Valores do trabalho do compressor para cada valor da temperatura do ar aspirado.

T1	k cte ideal	k cte real	cp variável	cp variável real
(K)	(kJ/kg)	(kJ/kg)	Ideal (kJ/kg)	(kJ/kg)
278	348,7	382,7	331,7	381,6
279	350,1	384,1	332,9	383,1
280	351,4	385,6	334,1	384,6
281	352,8	387,1	335,3	386,1
282	354,2	388,6	336,5	387,5
283	355,6	390,1	337,7	389
284	356,9	391,6	338,9	390,5
285	358,3	393,1	340,1	391,9
286	359,7	394,6	341,3	393,4
287	361,1	396,1	342,5	394,9
288	362,5	397,6	343,7	396,4
289	363,8	399	344,9	397,9
290	365,2	400,5	346,1	399,4
291	366,6	402	347,3	400,9
292	368	403,5	348,5	402,3
293	369,4	405,1	349,7	403,8
294	370,8	406,6	350,9	405,3
295	372,1	408,1	352,1	406,8
296	373,5	409,6	353,3	408,3

297	374,9	411,1	354,5	409,8
298	376,3	412,6	355,7	411,3
299	377,7	414,1	356,8	412,8
300	379,1	415,6	358	414,3
301	380,5	417,1	359,2	415,8
302	381,9	418,6	360,4	417,3
303	383,3	420,1	361,6	418,8
304	384,7	421,7	362,8	420,3
305	386	423,2	364	421,8
306	387,4	424,7	365,2	423,3
307	388,8	426,2	366,4	424,9
308	390,2	427,7	367,6	426,4
309	391,6	429,3	368,8	427,9
310	393	430,8	370	429,4
311	394,4	432,3	371,1	430,9
312	395,8	433,8	372,3	432,4
313	397,2	435,4	373,5	433,9
314	398,6	436,9	374,7	435,5
315	400	438,4	375,9	437
316	401,4	440	377,1	438,5
317	402,8	441,5	378,3	440
318	404,2	443	379,5	441,5
319	405,6	444,6	380,7	443,1
320	407	446,1	381,8	444,6
321	408,4	447,6	383	446,1
322	409,8	449,2	384,2	447,6
323	411,2	450,7	385,4	449,2
324	412,6	452,3	386,6	450,7
325	414,1	453,8	387,8	452,2
326	415,5	455,4	389	453,7
327	416,9	456,9	390,2	455,3
328	418,3	458,5	391,3	456,8

Figura 39: Análise do trabalho do compressor dos ciclos

Como é visto na figura 39 o trabalho do compressor nos casos reais é maior que nos casos ideais, devido a perdas de cargas relativas ao processo de compressão, como atrito do ar com as paredes do compressor. Analisando a influência do resfriamento do ar ambiente no comportamento do trabalho do compressor, tem-se que, quanto menor a temperatura de aspiração, maior a massa de ar admitido, forçando o dispositivo a realizar um trabalho maior, para comprimir o mesmo volume de ar.

Figura 40: Calor específico de cada estado específico em função

da temperatura de aspiração.

7.2 Turbina SGT-200

SGT-200

Geração de energia 6,75 MW(e)

- Combustível: Gás natural*
- Freqüência: 50/60Hz
- Eficiência elétrica:31,5%
- Taxa de calor: 1.418 kJ/kWh
- Rotação da turbina: 11.053 rpm
- Coeficiente de pressão do compressor: 12,2:1
- Fluxo de gás de escape: 29,3 kg/s
- Temperatura: 466°C
- Emissões de NO_x (com DLE, corrigidas para 15% O₂ seco): ≤ 25 ppmV

Acionamento mecânico 7,68 MW

- Combustível: Gás natural*
- Eficiência: 33,0%
- Taxa de calor: 10.906 kJ/kWh
- Rotação da turbina: 10.950 rpm
- Coeficiente de pressão do compressor: 12,3:1
- Fluxo de gás de escape: 29,5 kg/s
- Temperatura: 489°C
- Emissões de NO_x (com DLE, corrigidas para 15% O₂ seco): ≤ 25 ppmV

Figura 41: Dados do catálogo referente à turbina

SGT - 200

Dados de catálogo: $W_{liq} = 7680 \text{ kW}$ $\eta_t = 33\%$ $R_p = 12,3$ $\dot{m}_{ar} = 29,5 \text{ kg/s}$ $T_4 = 489 \text{ °C}$

Na tabela 7 são apresentados os valores calculados, para todos os ciclos, do rendimento para cada faixa de temperatura do ar ambiente.

T1	k cte ideal	k cte real	cp variável	cp variável real
(K)	(%)	(%)	Ideal (%)	(%)
278	55,46	45,01	42,65	33,94
279	55,47	44,98	42,64	33,89
280	55,48	44,95	42,64	33,84
281	55,48	44,91	42,63	33,8
282	55,49	44,88	42,62	33,75
283	55,5	44,85	42,62	33,7
284	55,5	44,82	42,61	33,65
285	55,51	44,78	42,6	33,6
286	55,52	44,75	42,59	33,55
287	55,52	44,71	42,59	33,5
288	55,53	44,68	42,58	33,44
289	55,54	44,64	42,57	33,39
290	55,54	44,61	42,56	33,34
291	55,55	44,57	42,55	33,29
292	55,56	44,54	42,54	33,23
293	55,56	44,5	42,54	33,18
294	55,57	44,47	42,53	33,12
295	55,57	44,43	42,52	33,07
296	55,58	44,39	42,51	33,01
297	55,59	44,36	42,5	32,96
298	55,59	44,32	42,49	32,9
299	55,6	44,28	42,48	32,84
300	55,61	44,24	42,47	32,79
301	55,61	44,2	42,46	32,73
302	55,62	44,17	42,45	32,67
303	55,63	44,13	42,43	32,61
304	55,63	44,09	42,42	32,55

Tabela 7 – Valores de rendimento do ciclo para cada valor da temperatura do ar aspirado.

305	55,64	44,05	42,41	32,49
306	55,64	44,01	42,4	32,43
307	55,65	43,97	42,39	32,37
308	55,66	43,93	42,38	32,31
309	55,66	43,89	42,36	32,24
310	55,67	43,84	42,35	32,18
311	55,67	43,8	42,34	32,12
312	55,68	43,76	42,33	32,05
313	55,69	43,72	42,31	31,99
314	55,69	43,68	42,3	31,92
315	55,7	43,63	42,29	31,86
316	55,7	43,59	42,27	31,79
317	55,71	43,54	42,26	31,72
318	55,72	43,5	42,25	31,66
319	55,72	43,46	42,23	31,59
320	55,73	43,41	42,22	31,52
321	55,73	43,37	42,2	31,45
322	55,74	43,32	42,19	31,38
323	55,75	43,27	42,17	31,31
324	55,75	43,23	42,16	31,24
325	55,76	43,18	42,14	31,17
326	55,76	43,13	42,13	31,1
327	55,77	43,08	42,11	31,02
328	55,77	43,04	42,09	30,95

Figura 42: Rendimento dos ciclos em função da variação da temperatura de aspiração.

Observa-se que a temperatura de admissão no compressor influencia num acréscimo do rendimento no ciclo ideal considerando o c_p do ar constante, porém nos demais ciclos representados, como o ciclo ideal considerando o c_p constante, o ciclo ideal considerando o c_p do ar variável e o ciclo real considerando o c_p do ar variável, verificou-se um decréscimo nos rendimentos desses ciclos.

Enquanto os ciclos que consideram o c_p do ar constante como ciclo ideal possui um déficit de 0,31%, devido ao acréscimo de rendimento visto no gráfico, o ciclo ideal possui um ganho de 1,97% em seu rendimento.

Os ciclos que consideram que o c_p do ar varia junto com sua temperatura como ciclo ideal possui um aumento de 0,56% em seu rendimento, o ciclo real possui um aumento de 3% em seu rendimento.

Na tabela 8 são representados os valores, para todos os ciclos, da potência produzida para cada faixa de temperatura ambiente.

ai aspirauc)			
T1	k cte ideal	k cte real	cp variável	cp variável real
(K)	(kW)	(kW)	Ideal (kW)	(kW)
278	13212	10746	11128	8694
279	13178	10708	11094	8655
280	13145	10669	11060	8617
281	13112	10631	11026	8578
282	13078	10593	10992	8539
283	13045	10555	10957	8500
284	13011	10516	10923	8461
285	12978	10478	10889	8422
286	12944	10440	10855	8382
287	12910	10401	10820	8343
288	12877	10363	10786	8304
289	12843	10324	10751	8265
290	12809	10286	10717	8226
291	12776	10247	10682	8186
292	12742	10208	10648	8147
293	12708	10170	10613	8107
294	12674	10131	10579	8068
295	12641	10092	10544	8029
296	12607	10054	10509	7989
297	12573	10015	10475	7949
298	12539	9976	10440	7910
299	12505	9937	10405	7870

Tabela 8 - Valores de potência líquida produzida para cada valor da temperatura do ar aspirado

300	12471	9898	10370	7831
301	12437	9859	10336	7791
302	12403	9820	10301	7751
303	12369	9782	10266	7711
304	12335	9742	10231	7672
305	12301	9703	10196	7632
306	12266	9664	10161	7592
307	12232	9625	10126	7552
308	12198	9586	10091	7512
309	12164	9547	10056	7472
310	12129	9508	10021	7432
311	12095	9468	9986	7392
312	12061	9429	9951	7352
313	12026	9390	9916	7312
314	11992	9350	9881	7272
315	11958	9311	9845	7232
316	11923	9272	9810	7192
317	11889	9232	9775	7152
318	11854	9193	9740	7112
319	11820	9153	9705	7072
320	11785	9114	9669	7032
321	11750	9074	9634	6991
322	11716	9034	9599	6951
323	11681	8995	9564	6911
324	11646	8955	9528	6871
325	11612	8915	9493	6831
326	11577	8875	9458	6790
327	11542	8836	9422	6750
328	11507	8796	9387	6710

Figura 43: Potência líquida produzida ciclos.

Na figura 43 é observado a variação da potência líquida produzida nos ciclos analisados. Que se dá de maneira diretamente proporcional com a variação do ar de absorção do compressor.

Onde o incremento da temperatura de ar de sucção tem como efeito a diminuição da massa de ar captada pelo compressor, deixando assim a razão ar/combustível pobre em ar defasando a produção de potência.

O ganho para cada ciclo com o resfriamento do ar é:

- Para o ciclo ideal considerando o c_p constante o ganho de potência líquida produzida é de 1705 kW e o incremento obtido é de 13%.

- Para o ciclo real considerando o c_p constante o ganho de potência líquida produzida é de 1950 kW e o incremento obtido é de 18,4%.

- Para o ciclo ideal considerando o c_p variável o ganho de potência líquida produzida é de 1741 kW e o incremento obtido é de 15,7%.

- Para o ciclo real considerando o c_p variável o ganho de potência líquida produzida é de 1984 kW e o incremento obtido é de 22,82%.

Mostrando ser um procedimento eficiente e vantajoso de se aplicar.

Na tabela 9 são representados os valores, para todos os ciclos, do calor aportado para cada faixa de temperatura ambiente.

T1	k cte ideal	k cte real	cp variável	cp variável real
(K)	(kJ/s)	(kJ/s)	Ideal (kJ/s)	(kJ/s)
278	23821	23873	25619	25149
279	23758	23806	25546	25073
280	23695	23738	25472	24997
281	23632	23670	25399	24921
282	23569	23602	25325	24844
283	23506	23534	25252	24768
284	23443	23466	25178	24692
285	23379	23398	25104	24615
286	23316	23330	25031	24539
287	23253	23261	24957	24463
288	23189	23193	24883	24386
289	23126	23125	24810	24310
290	23063	23057	24736	24234
291	22999	22989	24662	24157
292	22936	22920	24589	24081
293	22872	22852	24515	24004
294	22809	22784	24441	23928
295	22745	22715	24368	23851
296	22682	22647	24294	23775
297	22618	22578	24220	23699
298	22555	22510	24147	23622
299	22491	22441	24073	23546
300	22427	22373	23999	23469
301	22363	22304	23926	23393
302	22300	22235	23852	23316
303	22236	22167	23778	23240
304	22172	22098	23705	23163
305	22108	22029	23631	23087
306	22044	21960	23558	23011
307	21981	21892	23484	22934
308	21917	21823	23410	22858
309	21853	21754	23337	22781
310	21789	21685	23263	22705
311	21725	21616	23190	22628
312	21661	21547	23116	22552
313	21597	21478	23043	22476
314	21532	21409	22969	22399
315	21468	21340	22896	22323
316	21404	21271	22822	22247
317	21340	21202	22749	22170
318	21276	21132	22675	22094
319	21211	21063	22602	22018

Tabela 9 – Valores de calor aportado para cada valor da temperatura do ar aspirado

320	21147	20994	22528	21941
321	21083	20925	22455	21865
322	21019	20855	22382	21789
323	20954	20786	22308	21712
324	20890	20716	22235	21636
325	20825	20647	22162	21560
326	20761	20578	22088	21484
327	20696	20508	22015	21408
328	20632	20438	21942	21331

Figura 44: Taxa de calor aportado nos ciclos em função da temperatura de aspiração.

A figura 44 evidencia para os quatro ciclos que com a diminuição da temperatura ambiente maior será a taxa de calor aportado por eles.

No processo da compressão, o ar admitido é comprimido e lhe é adicionado temperatura como consequência deste processo, porém, o presente trabalho estuda o arrefecimento do mesmo na entrada do compressor.

Ao sofrer o arrefecimento e posteriormente a compressão, sua temperatura após esses dois procedimentos irá sofrer um incremento, mas se comparado ao ar sem ter sofrido o resfriamento, o incremento sofrido é menor, desta maneira a temperatura de queima da mistura ar/combustível terá que ser elevada, aumentando assim a quantidade de calor aportado pelo ciclo.

Na tabela 10 são representados os valores, para todos os ciclos, da vazão mássica do combustível para cada faixa de temperatura ambiente.

T1	k cte ideal	k cte real	cp variável	cp variável
(K)	(kg/s)	(kg/s)	Ideal (kg/s)	real (kg/s)
278	0,476	0,477	0,544	0,5493
279	0,4747	0,4756	0,5427	0,5479
280	0,4734	0,4743	0,5415	0,5466
281	0,4722	0,4729	0,5402	0,5453
282	0,4709	0,4716	0,539	0,544
283	0,4696	0,4702	0,5377	0,5426
284	0,4684	0,4688	0,5365	0,5413
285	0,4671	0,4675	0,5353	0,54
286	0,4659	0,4661	0,534	0,5387
287	0,4646	0,4648	0,5328	0,5373
288	0,4633	0,4634	0,5315	0,536
289	0,4621	0,462	0,5303	0,5347
290	0,4608	0,4607	0,5291	0,5334
291	0,4595	0,4593	0,5278	0,532
292	0,4583	0,4579	0,5266	0,5307
293	0,457	0,4566	0,5253	0,5294
294	0,4557	0,4552	0,5241	0,5281
295	0,4545	0,4538	0,5228	0,5267
296	0,4532	0,4525	0,5216	0,5254
297	0,4519	0,4511	0,5204	0,5241
298	0,4506	0,4497	0,5191	0,5228
299	0,4494	0,4484	0,5179	0,5214
300	0,4481	0,447	0,5166	0,5201
301	0,4468	0,4456	0,5154	0,5188
302	0,4455	0,4443	0,5142	0,5175
303	0,4443	0,4429	0,5129	0,5161
304	0,443	0,4415	0,5117	0,5148
305	0,4417	0,4401	0,5104	0,5135
306	0,4404	0,4388	0,5092	0,5122
307	0,4392	0,4374	0,5079	0,5108
308	0,4379	0,436	0,5067	0,5095
309	0,4366	0,4346	0,5055	0,5082
310	0,4353	0,4333	0,5042	0,5068
311	0,4341	0,4319	0,503	0,5055
312	0,4328	0,4305	0,5017	0,5042

Tabela 10 – Valores de vazão mássica do combustível para cada valor da temperatura do ar aspirado.

313	0,4315	0,4291	0,5005	0,5029
314	0,4302	0,4278	0,4992	0,5015
315	0,4289	0,4264	0,498	0,5002
316	0,4277	0,425	0,4968	0,4989
317	0,4264	0,4236	0,4955	0,4976
318	0,4251	0,4222	0,4943	0,4962
319	0,4238	0,4208	0,493	0,4949
320	0,4225	0,4195	0,4918	0,4936
321	0,4212	0,4181	0,4906	0,4923
322	0,42	0,4167	0,4893	0,4909
323	0,4187	0,4153	0,4881	0,4896
324	0,4174	0,4139	0,4868	0,4883
325	0,4161	0,4125	0,4856	0,487
326	0,4148	0,4111	0,4843	0,4856
327	0,4135	0,4098	0,4831	0,4843
328	0,4122	0,4084	0,4819	0,483

Figura 45: Vazão mássica do combustível nos 4 ciclos.

Com o arrefecimento do ar de aspiração a vazão mássica do combustível apresenta um comportamento inversamente proporcional em relação à variação da temperatura de ar resfriado, isso se dá para que a temperatura de queima da mistura ar/combustível constante, para que a câmara de combustível não perca a sua eficiência.

Na tabela 11 são representados os valores, para todos os ciclos, da taxa de calor em função do poder calorífico inferior do combustível para cada faixa de temperatura ambiente.

T1	k cte ideal	k cte real	cp variável	cp variável real
(K)	(kJ/kW-h)	(kJ/kW-h)	Ideal (kJ/kW-h)	(kJ/kW-h)
278	6491	7998	8807	11383
279	6490	8004	8814	11407
280	6489	8009	8821	11430
281	6489	8015	8828	11454
282	6488	8021	8835	11479
283	6487	8027	8843	11503
284	6486	8033	8850	11528
285	6485	8039	8857	11553
286	6485	8045	8865	11579
287	6484	8051	8872	11604
288	6483	8057	8880	11630
289	6482	8064	8887	11657
290	6482	8070	8895	11683
291	6481	8076	8903	11710
292	6480	8083	8911	11738
293	6479	8089	8918	11765
294	6479	8096	8927	11793
295	6478	8103	8935	11821
296	6477	8109	8943	11850
297	6476	8116	8951	11879
298	6476	8123	8959	11908
299	6475	8130	8968	11938
300	6474	8137	8976	11968
301	6473	8144	8985	11998
302	6473	8151	8994	12029
303	6472	8158	9002	12060
304	6471	8166	9011	12091
305	6470	8173	9020	12123
306	6470	8180	9029	12155
307	6469	8188	9038	12188
308	6468	8195	9047	12220
309	6468	8203	9057	12254
310	6467	8211	9066	12287
311	6466	8219	9075	12322
312	6465	8227	9085	12356
313	6465	8235	9094	12391
314	6464	8243	9104	12426
315	6463	8251	9114	12462

Tabela 11 – Valores de taxa de calor em função do PCI do combustível para cada valor de temperatura do ar aspirado.

316	6463	8259	9124	12498
317	6462	8267	9134	12535
318	6461	8276	9144	12572
319	6461	8284	9154	12610
320	6460	8293	9164	12648
321	6459	8302	9174	12686
322	6459	8310	9185	12725
323	6458	8319	9195	12765
324	6457	8328	9206	12805
325	6457	8337	9216	12845
326	6456	8346	9227	12886
327	6455	8356	9238	12928
328	6455	8365	9249	12970

Figura 46: Taxa de calor em função do PCI do combustível dos ciclos.

A figura 46 ilustra a variação da *heat rate* (taxa de calor), porém ela é em função do poder calorífico inferior do combustível (PCI), basicamente ela se resume no quanto essa máquina térmica recebe de energia, em forma de calor, e consegue transformar, de maneira eficiente, em energia elétrica.

Esta taxa de calor dependente acompanha o aumento da vazão mássica do combustível, já que ela depende de uma propriedade do mesmo, o PCI.

Na tabela 12 são representados os valores, para todos os ciclos, do trabalho consumido pelo compressor para cada faixa de temperatura ambiente.

T1	k cte ideal	k cte real	cp variável	cp variável real
(K)	(kJ/kg)	(kJ/kg)	Ideal (kJ/kg)	(kJ/kg)
278	296,8	336,6	296	335,7
279	297,9	337,9	297,1	337
280	299	339,2	298,3	338,3
281	300,2	340,5	299,4	339,6
282	301,3	341,8	300,5	340,8
283	302,4	343,1	301,6	342,1
284	303,6	344,4	302,7	343,4
285	304,7	345,7	303,9	344,7
286	305,8	347	305	346
287	307	348,3	306,1	347,3
288	308,1	349,6	307,3	348,6
289	309,3	350,9	308,4	349,9
290	310,4	352,2	309,5	351,2
291	311,6	353,5	310,7	352,5
292	312,7	354,8	311,8	353,8
293	313,8	356,1	312,9	355,1
294	315	357,4	314,1	356,4
295	316,1	358,7	315,2	357,7
296	317,3	360	316,3	359
297	318,4	361,4	317,5	360,3
298	319,6	362,7	318,6	361,6
299	320,7	364	319,8	362,9
300	321,9	365,3	320,9	364,2
301	323	366,6	322,1	365,5
302	324,2	367,9	323,2	366,8
303	325,3	369,3	324,4	368,1
304	326,5	370,6	325,5	369,5
305	327,7	371,9	326,7	370,8
306	328,8	373,2	327,8	372,1
307	330	374,6	329	373,4
308	331,1	375,9	330,1	374,7
309	332,3	377,2	331,3	376
310	333,5	378,6	332,4	377,4
311	334,6	379,9	333,6	378,7
312	335,8	381,2	334,7	380
313	337	382,5	335,9	381,3
314	338,1	383,9	337	382,7
315	339,3	385,2	338,2	384

Tabela 12 – Valores do trabalho do compressor para cada valor de temperatura do ar aspirado.

316	340,5	386,6	339,4	385,3
317	341,6	387,9	340,5	386,6
318	342,8	389,2	341,7	388
319	344	390,6	342,8	389,3
320	345,1	391,9	344	390,6
321	346,3	393,3	345,2	391,9
322	347,5	394,6	346,3	393,3
323	348,7	395,9	347,5	394,6
324	349,8	397,3	348,7	395,9
325	351	398,6	349,8	397,3
326	352,2	400	351	398,6
327	353,4	401,3	352,1	399,9
328	354,6	402,7	353,3	401,3

Figura 47: Análise do trabalho do compressor dos ciclos em função da variação da temperatura de aspiração.

Como é visto na figura 47 o trabalho do compressor nos casos reais é maior que nos casos ideais, devido a perdas de cargas relativas ao processo de compressão, como atrito do ar com as paredes do compressor. Analisando a influência do resfriamento do ar ambiente no comportamento do trabalho do compressor, tem-se que, quanto menor a temperatura de

aspiração, maior a massa de ar admitido, forçando o dispositivo à realizar um trabalho maior, para comprimir o mesmo volume de ar.

7.3 Turbina SGT – 300

SGT-300

Geração de energia 7,90 MW(e)

- Combustível: Gás natural*
- Freqüência: 50/60Hz
- Eficiência elétrica: 30,6%
- Taxa de calor: 11.532 kJ/kWh
- Rotação da turbina: 14.010 rpm
- Coeficiente de pressão do compressor: 13,7:1
- Fluxo de gás de escape: 29,8 kg/s
- Temperatura: 537°C
- Emissões de NO_x (com DLE, corrigidas para 15% O₂ seco): ≤ 15 ppmV

Acionamento mecânico 8,2 MW

- Combustível: Gás natural*
- Eficiência: 34,6%
- Taxa de calor: 10.400 kJ/kWh
- Rotação da turbina: 11.500 rpm
- Coeficiente de pressão do compressor: 13,3:1
- Fluxo de gás de escape: 29,0 kg/s
- Temperatura: 498°C
- Emissões de NO_x (com DLE, corrigidas para 15% O₂ seco): ≤ 15 ppmV

Figura 48: Representação dos dados do catálogo referente à turbina SGT – 300.

Dados de catálogo: $W_{liq} = 8200 \text{ kW}$ $\eta_t = 34,6\%$ $R_p = 13,3$ $\dot{m}_{ar} = 29 \text{ kg/s}$ $T_4 = 498 \,^\circ\text{C}$ Na tabela 13 são representados os valores, para todos os ciclos, do rendimento térmico para cada faixa de temperatura ambiente.

T1	k cte ideal	k cte real	cp variável Ideal	cp variável Real
(K)	%	%	%	%
278	56,61	45,39	43,46	34,1
279	56,61	45,36	43,45	34,05
280	56,62	45,32	43,44	34
281	56,63	45,29	43,44	33,95
282	56,63	45,25	43,43	33,9
283	56,64	45,22	43,42	33,85
284	56,65	45,18	43,42	33,79
285	56,65	45,14	43,41	33,74
286	56,66	45,11	43,4	33,69
287	56,66	45,07	43,39	33,63
288	56,67	45,03	43,38	33,58
289	56,68	45	43,38	33,52
290	56,68	44,96	43,37	33,47
291	56,69	44,92	43,36	33,41
292	56,7	44,88	43,35	33,35
293	56,7	44,84	43,34	33,3
294	56,71	44,8	43,33	33,24
295	56,72	44,76	43,32	33,18
296	56,72	44,72	43,31	33,12
297	56,73	44,68	43,3	33,06
298	56,73	44,64	43,29	33
299	56,74	44,6	43,28	32,94
300	56,75	44,56	43,27	32,88
301	56,75	44,52	43,26	32,82
302	56,76	44,48	43,25	32,76
303	56,77	44,44	43,24	32,69
304	56,77	44,39	43,22	32,63
305	56,78	44,35	43,21	32,57
306	56,78	44,31	43,2	32,5
307	56,79	44,26	43,19	32,44
308	56,8	44,22	43,18	32,37
309	56,8	44,17	43,16	32,3
310	56,81	44,13	43,15	32,24
311	56,81	44,08	43,14	32,17
312	56,82	44,04	43,13	32,1
313	56,83	43,99	43,11	32,03
314	56,83	43,95	43,1	31,96
315	56,84	43,9	43,08	31,89

Tabela 13 – Valores do rendimento do ciclo para cada valor de temperatura do ar aspirado.

316	56,84	43,85	43,07	31,82
317	56,85	43,81	43,06	31,75
318	56,85	43,76	43,04	31,68
319	56,86	43,71	43,03	31,61
320	56,87	43,66	43,01	31,54
321	56,87	43,61	43	31,46
322	56,88	43,56	42,98	31,39
323	56,88	43,51	42,97	31,31
324	56,89	43,46	42,95	31,24
325	56,89	43,41	42,94	31,16
326	56,9	43,36	42,92	31,09
327	56,9	43,31	42,9	31,01
328	56,91	43,26	42,89	30,93

Figura 49: Rendimento dos ciclos em função da variação da temperatura de aspiração.

Observa-se que a temperatura de admissão no compressor influencia num acréscimo do rendimento no ciclo ideal considerando o c_p do ar constante, porém nos demais ciclos representados, como o ciclo ideal considerando o c_p constante, o ciclo ideal considerando o c_p do ar variável e o ciclo real considerando o c_p do ar variável, verificou-se um decréscimo nos rendimentos desses ciclos.

Enquanto os ciclos que consideram o c_p do ar constante como ciclo ideal possui um déficit de 0,3%, devido ao acréscimo de rendimento visto no gráfico, o ciclo ideal possui um ganho de 2,13% em seu rendimento.

Os ciclos que consideram que o c_p do ar varia junto com sua temperatura como ciclo ideal possui um aumento de 0,57% em seu rendimento, o ciclo real possui um aumento de 3,17% em seu rendimento.

Na tabela 14 são representados os valores, para todos os ciclos, da potência líquida produzida para cada faixa de temperatura ambiente.

T1	K cte ideal	K cte real	cp variável	cp variável Real
(K)	(kW)	(kW)	ideal (kW)	(kW)
278	13717,701	11025,28	11549,72	8892
279	13683,309	10985,604	11514,61	8852
280	13648,888	10945,894	11479,46	8812
281	13614,437	10906,148	11444,26	8771
282	13579,956	10866,367	11409,02	8731
283	13545,445	10826,551	11373,73	8690
284	13510,904	10786,699	11338,4	8650
285	13476,333	10746,813	11303,03	8609
286	13441,732	10706,89	11267,62	8568
287	13407,101	10666,933	11232,17	8528
288	13372,439	10626,94	11196,69	8487
289	13337,747	10586,911	11161,16	8446
290	13303,024	10546,847	11125,6	8405
291	13268,271	10506,747	11090	8364
292	13233,488	10466,612	11054,36	8323
293	13198,673	10426,442	11018,69	8282
294	13163,829	10386,235	10982,99	8241
295	13128,953	10345,993	10947,25	8200
296	13094,047	10305,716	10911,48	8159
297	13059,11	10265,403	10875,68	8118
298	13024,142	10225,054	10839,84	8077
299	12989,143	10184,67	10803,98	8035
300	12954,114	10144,25	10768,09	7994
301	12919,053	10103,794	10732,16	7953
302	12883,962	10063,303	10696,21	7911
303	12848,84	10022,776	10660,24	7870
304	12813,687	9982,214	10624,23	7829
305	12778,503	9941,616	10588,2	7787
306	12743,288	9900,983	10552,14	7746

Tabela 14 – Valores de potência líquida para cada valor de temperatura do ar aspirado

307	12708,043	9860,314	10516,06	7704
308	12672,766	9819,61	10479,96	7663
309	12637,458	9778,871	10443,83	7621
310	12602,12	9738,096	10407,68	7580
311	12566,75	9697,286	10371,5	7538
312	12531,35	9656,44	10335,31	7497
313	12495,918	9615,559	10299,1	7455
314	12460,456	9574,643	10262,86	7413
315	12424,963	9533,692	10226,61	7372
316	12389,439	9492,706	10190,33	7330
317	12353,885	9451,684	10154,04	7288
318	12318,299	9410,628	10117,73	7247
319	12282,683	9369,536	10081,41	7205
320	12247,036	9328,41	10045,06	7163
321	12211,358	9287,249	10008,71	7121
322	12175,65	9246,053	9972,33	7079
323	12139,911	9204,822	9935,94	7038
324	12104,141	9163,557	9899,54	6996
325	12068,34	9122,257	9863,13	6954
326	12032,51	9080,922	9826,7	6912
327	11996,648	9039,553	9790,26	6870
328	11960,756	8998,15	9753,81	6828

Figura 50: Potência líquida produzida nos ciclos.

Na figura 50 é observado a variação da potência líquida produzida nos ciclos analisados. Que se dá de maneira diretamente proporcional com a variação do ar de absorção do compressor.

Onde o incremento da temperatura de ar de sucção tem como efeito a diminuição da massa de ar captada pelo compressor, deixando assim a razão ar/combustível pobre em ar defasando a produção de potência.

O ganho para cada ciclo com o resfriamento do ar é:

- Para o ciclo ideal considerando o c_p constante o ganho de potência líquida produzida é de 1756,95 kW e o incremento obtido é de 12,8%.

- Para o ciclo real considerando o c_p constante o ganho de potência líquida produzida é de 2027,13 kW e o incremento obtido é de 18,4%.

- Para o ciclo ideal considerando o c_p variável o ganho de potência líquida produzida é de 1795,91 kW e o incremento obtido é de 15,6%.

- Para o ciclo real considerando o c_p variável o ganho de potência líquida produzida é de 2064 kW e o incremento obtido é de 23,21%.

Na tabela 15 são representados os valores, para todos os ciclos, do calor aportado para cada faixa de temperatura ambiente.

T1	k cte ideal	k cte real	cp variável	cp variável real
(K)	(kJ/s)	(kJ/s)	Ideal (kJ/s)	(kJ/s)
278	24233,668	24288,257	26078,09	25580
279	24170,09	24219,396	26003,79	25503
280	24106,483	24150,499	25929,48	25426
281	24042,845	24081,567	25855,16	25348
282	23979,177	24012,598	25780,83	25271
283	23915,478	23943,594	25706,48	25193
284	23851,748	23874,554	25632,12	25116
285	23787,988	23805,478	25557,75	25038
286	23724,197	23736,366	25483,37	24961
287	23660,376	23667,218	25408,99	24884
288	23596,524	23598,035	25334,6	24806
289	23532,641	23528,816	25260,2	24729
290	23468,727	23459,56	25185,8	24651
291	23404,782	23390,269	25111,4	24574
292	23340,807	23320,942	25036,99	24496
293	23276,8	23251,579	24962,58	24418
294	23212,763	23182,18	24888,17	24341

Tabela 15 – Valores da quantidade de calor aportado para cada valor da temperatura do ar aspirado.

295	23148,695	23112,746	24813,76	24263
296	23084,595	23043,275	24739,35	24186
297	23020,465	22973,769	24664,95	24108
298	22956,304	22904,226	24590,54	24031
299	22892,111	22834,648	24516,15	23953
300	22827,888	22765,034	24441,75	23876
301	22763,633	22695,385	24367,36	23798
302	22699,347	22625,699	24292,98	23720
303	22635,031	22555,978	24218,6	23643
304	22570,683	22486,221	24144,23	23565
305	22506,304	22416,428	24069,87	23488
306	22441,893	22346,599	23995,52	23410
307	22377,452	22276,735	23921,18	23333
308	22312,979	22206,835	23846,85	23255
309	22248,476	22136,899	23772,53	23177
310	22183,941	22066,928	23698,23	23100
311	22119,374	21996,921	23623,93	23022
312	22054,777	21926,878	23549,66	22945
313	21990,149	21856,8	23475,39	22867
314	21925,489	21786,687	23401,14	22790
315	21860,798	21716,537	23326,91	22712
316	21796,076	21646,353	23252,7	22635
317	21731,323	21576,133	23178,5	22557
318	21666,538	21505,878	23104,32	22480
319	21601,722	21435,587	23030,15	22402
320	21536,876	21365,261	22956,01	22325
321	21471,998	21294,899	22881,89	22248
322	21407,089	21224,503	22807,78	22170
323	21342,148	21154,071	22733,7	22093
324	21277,177	21083,604	22659,64	22015
325	21212,175	21013,102	22585,6	21938
326	21147,141	20942,565	22511,59	21861
327	21082,077	20871,992	22437,6	21783
328	21016,981	20801,385	22363,63	21706

Figura 51: Taxa de calor aportado nos ciclos em função da temperatura de aspiração.

A figura 51 ilustra que para os quatro ciclos que com a diminuição da temperatura ambiente maior será a taxa de calor aportado por eles.

No processo da compressão, o ar admitido é comprimido e lhe é adicionado temperatura como consequência deste processo, porém, o presente trabalho estuda o arrefecimento do mesmo na entrada do compressor.

Ao sofrer o arrefecimento e posteriormente a compressão, sua temperatura após esses dois procedimentos irá sofrer um incremento, mas se comparado ao ar sem ter sofrido o resfriamento, o incremento sofrido é menor, desta maneira a temperatura de queima da mistura ar/combustível terá que ser elevada, aumentando assim a quantidade de calor aportado pelo ciclo.

Na tabela 16 são representados os valores, para todos os ciclos, da vazão mássica do combustível para cada faixa de temperatura ambiente.

uo ai as	pirado.			
T1	k cte ideal	k cte real	cp variável	cp variável real
(K)	(kg/s)	(kg/s)	ideal (kg/s)	(kg/s)
278	0,4842	0,4853	0,555	0,5609
279	0,4829	0,4839	0,5537	0,5596
280	0,4816	0,4825	0,5525	0,5582
281	0,4804	0,4812	0,5512	0,5569
282	0,4791	0,4798	0,55	0,5555
283	0,4778	0,4784	0,5487	0,5542
284	0,4766	0,477	0,5475	0,5529
285	0,4753	0,4756	0,5462	0,5515
286	0,474	0,4743	0,545	0,5502
287	0,4727	0,4729	0,5437	0,5488
288	0,4715	0,4715	0,5425	0,5475
289	0,4702	0,4701	0,5412	0,5462
290	0,4689	0,4687	0,54	0,5448
291	0,4676	0,4673	0,5387	0,5435
292	0,4663	0,466	0,5375	0,5421
293	0,4651	0,4646	0,5362	0,5408
294	0,4638	0,4632	0,535	0,5394
295	0,4625	0,4618	0,5337	0,5381
296	0,4612	0,4604	0,5325	0,5368
297	0,4599	0,459	0,5312	0,5354
298	0,4587	0,4576	0,53	0,5341
299	0,4574	0,4562	0,5287	0,5327
300	0,4561	0,4548	0,5275	0,5314
301	0,4548	0,4535	0,5262	0,5301
302	0,4535	0,4521	0,525	0,5287
303	0,4522	0,4507	0,5237	0,5274
304	0,451	0,4493	0,5225	0,526
305	0,4497	0,4479	0,5212	0,5247
306	0,4484	0,4465	0,52	0,5233
307	0,4471	0,4451	0,5187	0,522
308	0,4458	0,4437	0,5175	0,5207
309	0,4445	0,4423	0,5162	0,5193
310	0,4432	0,4409	0,515	0,518
311	0,4419	0,4395	0,5137	0,5166
312	0,4407	0,4381	0,5125	0,5153
313	0,4394	0,4367	0,5112	0,514
314	0,4381	0,4353	0,51	0,5126
315	0,4368	0,4339	0,5087	0,5113
316	0,4355	0,4325	0,5075	0,5099
317	0,4342	0,4311	0,5062	0,5086
318	0,4329	0,4297	0,505	0,5072

Tabela 16 – Valores de vazão mássica do combustível para cada valor da temperatura do ar aspirado.

319	0,4316	0,4283	0,5037	0,5059
320	0,4303	0,4269	0,5025	0,5046
321	0,429	0,4255	0,5012	0,5032
322	0,4277	0,4241	0,5	0,5019
323	0,4264	0,4227	0,4987	0,5005
324	0,4251	0,4213	0,4975	0,4992
325	0,4238	0,4198	0,4962	0,4979
326	0,4225	0,4184	0,495	0,4965
327	0,4212	0,417	0,4937	0,4952
328	0,4199	0,4156	0,4925	0,4938

Figura 52: Vazão mássica do combustível para os 4 ciclos.

Com o arrefecimento do ar de aspiração a vazão mássica do combustível apresenta um comportamento inversamente proporcional em relação à variação da temperatura de ar resfriado, isso se dá para que a temperatura de queima da mistura ar/combustível constante, para que a câmara de combustível não perca a sua eficiência.

Na tabela 17 são representados os valores, para todos os ciclos, da taxa de calor em função do poder calorífico inferior do combustível para cada faixa de temperatura ambiente.

T1	k cte ideal	k cte real	cp variável ideal	cp variável
(K)	(kJ/kW-h)	(kJ/kW-h)	(kJ/kW-h)	real (kJ/kW-
				h)
278	6359,754	7930,658	8657,45	11365
279	6359,012	7936,735	8664,32	11389
280	6358,272	7942,869	8671,26	11414
281	6357,534	7949,061	8678,27	11439
282	6356,798	7955,313	8685,36	11465
283	6356,064	7961,625	8692,53	11491
284	6355,333	7967,998	8699,76	11517
285	6354,604	7974,432	8707,08	11543
286	6353,877	7980,928	8714,47	11570
287	6353,152	7987,487	8721,93	11596
288	6352,43	7994,11	8729,48	11624
289	6351,71	8000,798	8737,1	11651
290	6350,993	8007,551	8744,79	11679
291	6350,278	8014,371	8752,56	11707
292	6349,566	8021,257	8760,41	11736
293	6348,856	8028,212	8768,34	11765
294	6348,149	8035,236	8776,35	11794
295	6347,444	8042,329	8784,43	11824
296	6346,743	8049,493	8792,59	11854
297	6346,043	8056,729	8800,83	11884
298	6345,346	8064,037	8809,15	11915
299	6344,653	8071,419	8817,56	11946
300	6343,961	8078,875	8826,04	11977
301	6343,273	8086,406	8834,6	12009
302	6342,587	8094,014	8843,24	12041
303	6341,904	8101,699	8851,96	12074
304	6341,224	8109,463	8860,76	12107
305	6340,546	8117,306	8869,65	12140
306	6339,872	8125,229	8878,62	12174
307	6339,2	8133,234	8887,67	12208
308	6338,532	8141,322	8896,8	12243
309	6337,866	8149,493	8906,01	12278
310	6337,203	8157,749	8915,31	12313
311	6336,543	8166,091	8924,7	12349
312	6335,886	8174,52	8934,17	12385
313	6335,231	8183,037	8943,72	12422
314	6334,58	8191,644	8953,36	12459

Tabela 17 – Valores da taxa de calor em função do PCI do combustível para cada valor da temperatura do aspirado.

315	6333,932	8200,342	8963,09	12497
316	6333,287	8209,132	8972,9	12535
317	6332,645	8218,015	8982,79	12573
318	6332,005	8226,992	8992,78	12612
319	6331,369	8236,065	9002,85	12652
320	6330,736	8245,236	9013,01	12692
321	6330,106	8254,504	9023,26	12732
322	6329,479	8263,873	9033,6	12773
323	6328,855	8273,343	9044,03	12815
324	6328,234	8282,916	9054,55	12857
325	6327,616	8292,593	9065,16	12900
326	6327,002	8302,376	9075,86	12943
327	6326,39	8312,266	9086,65	12987
328	6325,782	8322,265	9097,54	13031

Figura 53: Taxa de calor considerando o PCI do combustível para os 4 ciclos.

A figura 53 ilustra a variação da *heat rate* (taxa de calor), porém ela é em função do poder calorífico inferior do combustível (PCI), basicamente ela se resume no quanto essa máquina térmica recebe de energia, em forma de calor, e consegue transformar, de maneira eficiente, em energia elétrica.

Esta taxa de calor dependente acompanha o aumento da vazão mássica do combustível, já que ela depende de uma propriedade do mesmo, o PCI.

Na tabela 18 são representados os valores, para todos os ciclos, do trabalho consumido pelo compressor para cada faixa de temperatura ambiente.

T1	k cte ideal	kcte real	cp variável	cp variável real
(K)	(kj/kg)	(kj/kg)	ideal (kj/kg)	(kj/kg)
278	310,205	354,665	309,41	353,7
279	311,391	356,033	310,58	355,1
280	312,578	357,403	311,75	356,5
281	313,766	358,773	312,93	357,8
282	314,955	360,145	314,1	359,2
283	316,145	361,518	315,28	360,5
284	317,336	362,892	316,46	361,9
285	318,528	364,267	317,64	363,2
286	319,721	365,644	318,82	364,6
287	320,915	367,022	320,01	366
288	322,111	368,401	321,19	367,3
289	323,307	369,781	322,38	368,7
290	324,504	371,163	323,57	370,1
291	325,703	372,545	324,76	371,5
292	326,902	373,929	325,95	372,8
293	328,102	375,315	327,14	374,2
294	329,304	376,701	328,33	375,6
295	330,507	378,089	329,53	377
296	331,71	379,478	330,72	378,3
297	332,915	380,868	331,92	379,7
298	334,121	382,259	333,12	381,1
299	335,328	383,652	334,32	382,5
300	336,536	385,045	335,52	383,9
301	337,745	386,44	336,72	385,3
302	338,955	387,837	337,92	386,6
303	340,166	389,234	339,12	388
304	341,378	390,633	340,33	389,4
305	342,591	392,033	341,53	390,8
306	343,805	393,434	342,74	392,2
307	345,021	394,836	343,94	393,6
308	346,237	396,24	345,15	395
309	347,455	397,645	346,36	396,4
310	348,673	399,051	347,57	397,8
311	349,893	400,458	348,78	399,2
312	351,114	401,866	349,99	400,6

Tabela 18 – Valores de trabalho do compressor para cada valor da temperatura do ar aspirado.

313	352,335	403,276	351,21	402
314	353,558	404,687	352,42	403,4
315	354,782	406,099	353,63	404,8
316	356,007	407,512	354,85	406,2
317	357,233	408,927	356,06	407,6
318	358,46	410,343	357,28	409
319	359,688	411,76	358,5	410,4
320	360,918	413,178	359,71	411,8
321	362,148	414,597	360,93	413,2
322	363,379	416,018	362,15	414,6
323	364,612	417,439	363,37	416
324	365,845	418,862	364,59	417,4
325	367,079	420,287	365,81	418,8
326	368,315	421,712	367,03	420,2
327	369,552	423,138	368,25	421,6
328	370,789	424,566	369,47	423,1

Figura 54: Análise do trabalho do compressor para os 4 ciclos

Como é visto na figura 54 o trabalho do compressor nos casos reais é maior que nos casos ideais, devido a perdas de cargas relativas ao processo de compressão, como atrito do ar com as paredes do compressor. Analisando a influência do resfriamento do ar ambiente no comportamento do trabalho do compressor, tem-se que, quanto menor a temperatura de aspiração, maior a massa de ar admitido, forçando o dispositivo à realizar um trabalho maior, para comprimir o mesmo volume de ar.

Foi feita durante o estudo, uma análise, para a turbina SGT – 300, entre dois ciclos reais considerando o calor específico do ar variável, porém a diferença existente entre os estudos já apresentados com o que irá ser divulgado é que em um dos ciclos a temperatura de combustão varia junto com a variação da temperatura de sucção, enquanto o outro trabalha com a mesma fixada. Foi percebido durante essa análise que quando a temperatura de combustão variava, no caso de resfriamento do ar ambiente, abaixo da temperatura de 15°C, portanto abaixo da condição ISO, ela ultrapassava a temperatura de combustão do projeto. Como será mostrado na figura 41.

Na tabela 19 são representados os valores, para todos os ciclos, da temperatura de queima no intervalo de 10°C do ar ambiente.

Tabela 19 – Valores das temperaturas de queima de cada ciclo para cada valor da temperatura do as aspirado.

T1	Temp.queima variável	Temp.queima cte.
278	1342	1362
288	1362	1362
298	1382	1362
308	1402	1362
318	1422	1362
328	1442	1362

Figura 55: Análise entre o ciclo que fixa a temperatura de combustão e o ciclo que permite a variação da mesma.

Na tabela 20 são representados os valores, para todos os ciclos, da potência líquida produzida no intervalo de 10°C do ar ambiente.

T1	Pot.líq.Temp.queima variável	Pot.líq.Temp.queima cte
278	8574	8892
288	8472	8487
298	8366	8077
308	8259	7663
318	8149	7247
328	8038	6828

Tabela 20 – Valores das potências líquidas dos ciclos para cada valor da temperatura do ar aspirado.

Figura 56: Análise de potência líquida do ciclo considerando a variação da temperatura de queima, com o ciclo que a considera fixa.

Por meio da figura 56 pode-se tirar a seguinte conclusão:

Se fosse possível admitir que a temperatura de combustão variasse, juntamente, como o ar de admissão do compressor a geração de potência seria maior, se comparado ao ciclo que considera a temperatura de queima constante.

Variando a temperatura de queima, acarretaria na variação da temperatura de exaustão dos gases da turbina, fazendo com que o trabalho específico produzido aumentasse. Logo, aumentando o trabalho líquido produzido e consequentemente a sua potência líquida.

Na tabela 19 são representados os valores, para todos os ciclos, do rendimento térmico no intervalo de 10°C do ar ambiente.

Tabela 21 – Valores dos rendimentos dos ciclos para cada valor da temperatura do ar aspirado

T1	Rend.Temp.Queima variável	Rend.Temp.Queima cte
278	33,93	34,1
288	33,58	33,58
298	33,21	33
308	32,83	32,37
318	32,43	31,68
328	32,03	30,93

Figura 57: Análise de rendimento entre os ciclos com variação da temperatura de queima e a mesma sendo fixada.

Como pode ser visto pela ilustração do gráfico da figura 57, o rendimento do ciclo real com o c_p do ar variável, que considera a temperatura de queima da mistura ar/combustível constante, possui uma variação maior. Isso ocorre devido fato de que a temperatura de queima ser fixada, já que ela influencia na fixação da temperatura de

exaustão dos gases na turbina também, assim as entalpias dos estados específicos 3 e 4 serão fixadas. Isso correndo o que poderá variar no sistema serão, exclusivamente, as temperaturas de sucção do compressor e de final da compressão, estados específicos 1 e 2.

Após definidos as temperaturas que variam e as que são fixas, é observado que o único trabalho do ciclo que varia, é o trabalho do compressor, assim como o calor aportado pelo ciclo. Como o cálculo do rendimento do ciclo é a razão entre o trabalho líquido produzido e a quantidade de calor aportado.

Os únicos parâmetros que influenciaram, devido a suas variações, são o trabalho do compressor e a quantidade de calor aportado, fazendo o rendimento variar de forma acentuada.

Este processo não ocorre com o ciclo real com c_p do ar variável que considera a temperatura de queima variável, tendo como efeito a variação do trabalho da turbina, juntamente, como as variações do trabalho do compressor e da quantidade de calor aportado. Assim, variando menos o seu rendimento.

Na tabela 19 são representados os valores, para todos os ciclos, do calor aportado no intervalo de 10°C do ar ambiente.

T1	Calor.Aport.Temp.Queima variável	Calor.Aport.Temp.Queima cte
278	24842	25580
288	24806	24806
298	24771	24031
308	24737	23255
318	24705	22480
328	24673	21706

Tabela 22 – Valores do calor aportado pelos ciclos para cada valor da temperatura do ar aspirado.

Figura 58: Análise entre o calor aportado do ciclo que admite a variação da temperatura de combustão e o ciclo que trabalha com a mesma fixa.

Segundo o gráfico mostrado na figura 44, percebe-se que a variação do calor aportado para o ciclo com temperatura de queima da mistura ar/combustível é menor do que o trabalha com a mesma fixa na temperatura de projeto. Isto ocorre devido à variação da temperatura de queima, uma vez quando esta varia junto com a temperaturas de admissão e consequentemente com a de final de compressão, pela fórmula da quantidade de calor a seguir:

$$Q_{\text{entra}} = h_3 - h_2 \tag{7.0}$$

Assim, como foi citado, anteriormente, as variações das temperaturas de queima da mistura ar/combustível e a do final da compressão, resultarão em uma pequena variação da quantidade do calor aportado pelo ciclo. Isso não ocorre no ciclo oposto, onde é notada uma queda acentuada na taxa de calor aportado.

Capítulo 8

_

8 Conclusão

O presente trabalho teve como objetivo, estudar o resfriamento do ar de admissão da turbina a gás, bem como realizar análise desse processo em três modelos de turbina do fabricante Siemens e compará-los, para que fosse verificado como esse arrefecimento influenciaria, nos parâmetros acima apresentados,em cada um dos modelos utilizados. Para isso, os conceitos termodinâmicos referentes ao ciclo Brayton foram utilizados, como também pesquisa de dados, sobre as turbinas a gás, dos fabricantes, reunião de estudos realizados, anteriormente, sobre o assunto e a utilização do programa EES, para obter as soluções numéricas apresentadas.

Após a conclusão dessas etapas foram elaborados quatro modelos para três turbinas, considerando:

- Ciclos ideal e real considerando o calor específico do ar e do gás constantes, com temperatura de queima fixa.

- Ciclos ideal e real considerando o calor específico do ar e do gás constantes, com temperatura de queima variando.

- Ciclos ideal e real considerando o calor específico do ar e do gás variáveis, com temperatura de queima fixa.

- Ciclos ideal e real considerando o calor específico do ar e do gás variáveis, com temperatura de queima variando.

Os dados retirados do catálogo do fabricante deram origem aos modelos computacionais e foram utilizados para encontrar os resultados apresentados.

Foi realizada análise comparativa para os quatro ciclos citados acima, onde se observou uma aproximação satisfatória dos exemplos retirados dos catálogos.

Concluindo-se que o método de resfriamento do ar de sucção se mostrou eficiente com base na avaliação feita para os três modelos de turbina, onde foram comparados dois parâmetros:

- A energia necessária, em kW, para resfriar o ar ambiente no intervalo de 10°C;

Ganho de potência líquida, adquirido através do resfriamento do ar ambiente.

Onde a diferença entre a quantidade de energia necessária para resfriar o ar ambiente e o ganho de potência líquida produzida obtida com esse processo, será o valor da energia aproveitada para geração de energia.

A tabela 23 demonstra os valores em kW da energia necessária para resfriar o ar ambiente, e do ganho de potência obtido com o processo de arrefecimento, da turbina SGT – 100.

Tabela 23 – Taxa de calor retirado do ar ambiente e potência líquida produzida, no intervalo de 10° C da turbina SGT – 100.

T1	Taxa Calor retirado do ar aspirado	Potência líquida
(K)	(kW)	(kW)
278	991,3	6552
288	793,2	6252
298	594,9	5950
308	396,7	5644
318	198,4	5337
328	0	5029

Figura 59: Gráfico comparativo entre a taxa de calor retirado do ar e a potência produzida, para turbina SGT – 100.

Como ilustrado na figura 59 e demonstrado na tabela 23, pode ser percebido que a diferença entre os dois parâmetros aumenta com a queda da temperatura. Assim uma maior quantidade de energia pode ser aproveitada para geração de potência.

A tabela 24 demonstra os valores em kW da energia necessária para resfriar o ar ambiente, e do ganho de potência obtido com o processo de arrefecimento, da turbina SGT – 200.

T1	Taxa Calor retirada do ar aspirado	Potência líquida
(K)	(kW)	(kW)
278	1484	8694
288	1188	8304
298	890,9	7910
308	594	7512
318	297	7112
328	0	6710

Tabela 24 – Taxa de calor retirado do ar ambiente e potência líquida produzida, no intervalo de 10°C da turbina SGT – 200.

Figura 60: Gráfico comparativo entre a taxa de calor retirado do ar e a potência produzida, para turbina SGT – 200.

Também é visto que a diferença entre a taxa de calor retirado do ar e a potência líquida, é crescente com a redução da temperatura do ar ambiente, na turbina SGT – 200.

A tabela 25 demonstra os valores em kW da energia necessária para resfriar o ar ambiente, e do ganho de potência obtido com o processo de arrefecimento, da turbina SGT – 300.

T1	Taxa Calor retirado do ar aspirado	Potência Líquida						
(K)	(kW)	(kW)						
278	1459	8892						
288	1168	8487						
298	875,8	8077						
308	583,9	7663						
318	292	7247						
328	0	6828						

Tabela 25 – Taxa de calor retirado do ar ambiente e potência líquida produzida, no intervalo de 10° C da turbina SGT – 300.

Figura 61: Gráfico comparativo entre a taxa de calor retirado do ar e a potência produzida, para turbina SGT – 300.

Segundo a figura 61 e a tabela 25, pode ser observado um comportamento semelhante, aos comportamentos citados acima para as duas turbinas, na Turbina SGT – 300.

Também foi feita uma análise entre os treês turbinas, considerando o calor específico variável, onde foram comparados os seguintes parâmetros:

- Rendimento do ciclo
- Potência líquida produzida
- Calor aportado no ciclo

A tabela 26 demonstra o incremento em percentual, do rendimento, para as três turbinas, no intervalo de arrefecimento do ar de 5°C.

T1	SGT - 100	SGT – 200	SGT - 300
	%	%	%
5°C	0,27	0,24	0,25
10°C	0,55	0,5	0,58
15°C	0,85	0,76	0,8
20°C	1,16	1,04	1,1
25°C	1,49	1,33	1,41
30°C	1,83	1,63	1,73
35°C	2,18	1,95	2,07
40°C	2,55	2,28	2,42
45°C	2,94	2,63	2,79
50°C	3,34	2,99	3,17

Tabela 26 – Incremento do rendimento percentual do ciclo, com o arrefecimento do ar ambiente para os três modelos de turbina.

Figura 62 – Análise do rendimento entre os três modelos de turbina.

Como demonstrado na figura 62, a turbina SGT – 100 demonstrou ser mais eficiente em comparação aos outros 2 modelos, pois possui a maior razão de compressão. Onde a eficiência do ciclo guarda uma relação direta com a razão de compressão.

A Turbina SGT – 300 mostrou ser a segunda em termos de eficiência e consequentemente a SGT – 200 a menos eficiente das três.

Na tabela 27 é demonstrado o incremento em percentual, da potência líquida produzida, para as três turbinas, no intervalo de arrefecimento do ar de 5°C

T1	SGT - 100	SGT – 200	SGT - 300
	%	%	%
5°C	2,3	2,23	2,27
10°C	4,58	4,48	4,55
15°C	6,9	6,75	6,9
20°C	9,2	9,02	9,17
25°C	11,52	11,31	11,5
30°C	13,9	13,6	13,7
35°C	16,2	15,9	16,16
40°C	18,54	18,2	18,5
45°C	20,89	20,5	20,85
50°C	23,24	22,8	23,21

Tabela 27 – Incremento percentual da potência líquida produzida, para os três modelos de turbina, com o arrefecimento do ar ambiente.

Figura 63: Análise da potência líquida produzida pelos três modelos de turbina em função do arrefecimento do ar ambiente.

A figura 63 ilustra a comparação entre a potência líquida produzida pelas três turbinas, com o arrefecimento do ar ambiente com intervalo de 5°C. Onde a potência líquida tem relação direta com o rendimento do ciclo. Sendo assim a análise do rendimento, entre os três modelos estudados, feita acima, demonstra que o modelo SGT – 100 é a turbina mais eficiente das três. Logo, ele também será o modelo com maior produção de potência líquida, sendo seguido pelo modelo SGT – 300 e por último SGT – 200.

A tabela 28 demonstra os valores do incremento percentual da taxa de calor aportado de cada turbina, no intervalo de 5 °C do arrefecimento do ar ambiente.

T1	SGT - 100	SGT – 200	SGT - 300					
	%	%	%					
5°C	1,47	1,51	1,51					
10°C	2,95	3,03	3,02					
15°C	4,43	4,55	4,54					
20°C	5,9	6,07	6,06					
25°C	7,4	7,6	7,57					
30°C	8,9	9,1	9,09					
35°C	10,36	10,62	10,6					
40°C	11,83	12,15	12,12					
45°C	13,31	13,7	13,63					
50°C	14,8	15,2	15,14					

Tabela 28 – Incremento percentual da taxa de calor aportado, para cada turbina, com o arrefecimento do ar no intervalo de 5 °C

Figura 64 – Análise da taxa de calor aportado, para os três modelos de turbina, em função do arrefecimento do ar ambiente.

A figura 64 ilustra a comparação entre a taxa de calor aportado, para cada modelo de turbina a gás, em função do resfriamento do ar de admissão. Onde as turbinas SGT – 200 e SGT – 300 parecem ter o mesmo valor percentual de calor aportado, porém o modelo SGT –

200 possui a taxa de vazão mássica maior em comparação ao modelo SGT – 300. Isso influência no cálculo da taxa de calor aportado, segunda a Equação 6.65 do capítulo 6, a vazão mássica tem influência direta sobre a taxa de calor. Pois, se a vazão mássica aumenta a taxa de calor aportado também irá aumentar.

Deduz-se também, que as condições seguidas para a construção das turbinas a gás como, a temperatura ambiente a 15°C, se torna um problema, pois é praticamente impossível para países que possuem temperaturas elevadas como Brasil, terem essa temperatura ambiente como condição de operação para as turbinas a gás, e possuírem os mesmos rendimentos apresentados no catálogo do fabricante. Resultando assim, uma queda na produção de potência e como consequência no rendimento do ciclo.

Portanto, a eficácia do método estudado tem um impacto positivo na indústria de geração de energia, podendo auxiliar as unidades termelétricas não somente nos períodos de maior demanda energética, como no verão, como no incremento no fornecimento energético de maneira contínua ao longo dos anos, em regiões onde hidrelétricas não fornecem esse serviço. Ou ainda, auxiliar a manter de forma constante a produção de potência, no caso de uma planta industrial, que no decorrer do dia é observado uma variação de temperatura entre o dia e a noite. No caso das plataformas de extração e produção de petróleo, vem sendo estudado a captação de águas profundas a baixas temperaturas, para serem utilizadas no processo de arrefecimento do ar aspirado.

Capítulo 9

9 Sugestão para estudos futuros

São sugeridos, para a realização de futuros estudos, os seguintes assuntos:

- Realização de análise exergética aplicada à turbina a gás utilizando ciclo combinado, ciclo este usado com frequência por usinas termelétricas, com a finalidade de demonstrar a degradação da energia, como também a real magnitude dessas perdas no processo.

- Análise do trocador de calor utilizado para resfriamento do ar de admissão do compressor.

- Dimensionamento do sistema de arrefecimento para as turbinas supracitadas.

- Estudo do método de resfriamento, utilizado em plataformas de extração e produção de petróleo, localizadas em águas profundas, que utilizam a captação da água em elevadas profundidades (água <5°C) para o arrefecimento do ar de aspiração do compressor.

Referências Bibliográficas

[1] BELLORIO, Marcos; PIMENTA, João. Análise Teórica da influência do condicionamento do ar por resfriamento evaporativo sobre o desempenho de ciclos de turbina a gás. VIII Congreso Iberoamericano de Aire Acondicionado, Calefacción y Refrigeración. 2005.

[2] BOYCE, Meherwan P. *Gas Turbine Engineering Handbook*. 3.ed. Unites States: Gulf Professional Publishing; 2006

[3] CARVALHO JÚNIOR, Manoel Lélio Martins de. *Resfriamento de ar de entrada em turbina a gás no parque gerador elétrico brasileiro*. Universidade de São Paulo. Programa de Pós-Graduação em Energia. São Paulo, 2012. Disponível em: http://www.teses.usp.br Acesso em: 17 abr.2014.

[4] ÇENGEL, Yunus A.; BOLES, Michael A. *Termodinâmica*. 7.ed. United Kingdom: Bookman; 2013.

 [5] CHACARTEGUI, R; JIMÉNEZ – ESPADAFOR. F; SÁNCHEZ. D; SÁNCHEZ.T. Analysis of combustion turbine inlet air cooling systems applied to an operating cogeneration power plant. Energy Conversion and Management, Vol.49, Issue 8, August 2008. Disponível em: < HTTP:// www.elsevier.com/locate/enconman> Acesso em 10 mar.2014.

[6] COHEN, H; ROGERS, GFC; SARAVANAMUTTOO, HIH. *Gas Turbine Theory*. 4.ed. United Kingdom: Longman Group; 1996.

[7] GIAMPAOLO, Anthony. *Gas Turbine Handbook – Principles and Practices*. 3.ed. Unites States: The Fairmont Press; 2006.

[8] SANAYE, Sepehr; FARDAD, Abbasali; MOSTAKHDEMI, Masoud. *Thermoeconomic optimization of an ice thermal storage system for gas turbineinlet cooling*. Energy Conversion and Management, vol.31, January 2011. < http://www.elsevier.com/locate/enconman.> Acesso em: 15 abr.2014.

[9] SANTOS, Ana Paula; ANDRADE, Cláudia R. *Analysis of Gas Turbine Performance with Inlet Air Cooling Techniques Applied to Brazilian Sites*. J. Aerosp. Technol. Manag., São José dos Campos, Vol.4, No 3, pp. 341-353, Jul.-Sep., 2012. Disponível em <hr/><hr/>HTTP://www.jatm.com.br> Acesso em: 10 mar.2014.</hr>

[10] THABET, Mohsen; BRAHIM, Ammar ben; JASSIM, Rahim K. Limts of inlet air cooling system of gas turbines performance enhancement in hot and humid climates.

[11] ZADPOOR, Amir Abbas; GOLSHAN, Ali Hamedani. *Performance improvement of a gas turbine cycle by using adesiccant-based evaporative cooling system*. Energy Conversion and Management, vol.31, 2005. Disponível em: http://www.sciencedirect.com Acesso em: 15 abr.2014.

[12] PINHEIRO, Paulo Cesar da Costa; *A Carta Psicrométrica*. Depto. De Engenharia Mecânica da UFMG. Março 2011. Disponível em: <http://www.demec.ufmg.br/disciplinas/ema103/praticas/CartaPsicrometrica.pdf> Acesso em: 15 abr.2014.

[13] Artigo: *Combustion Turbine Inlet Cooling*. Disponível em: http://www.ashrae.org/publications/detail/16708> Acesso em: 17 abr.2014

[14] QUIEROZ, Manoel; MATIAS, José Augusto. *Básico de Turbina a Gás*. Petróleo Brasileiro S.A. Jan 2003. Disponível em: <HTTP//:http://www.ebah.com.br/content/ABAAABNPAAD/principios-basicos-turbina-agas>

Apêndice A – Descrição do software EES

EES é a sigla para *Engineering Equation Solver*, sua função básica é a resolução de um conjunto de equações algébricas. Ele também pode resolver equações diferenciais, equações com variáveis complexas, realizar progressão linear e não linear e gerar gráficos.

O programa tem como umas das suas principais características, que o diferencia dos demais programas de resoluções numéricas existentes, a identificação automática e o agrupamento das equações que devem ser resolvidas, de maneira simultânea. Outra função que o torna um programa prático para solução de problemas termodinâmicos é a presença de propriedades termodinâmicas, já embutidas na configuração do mesmo, como por exemplo: entalpia, entropia, calor específico a pressão constante, temperatura de bumbo úmido, umidade relativa do ar, entre outras. Onde essas funções dependem de valores de outras duas funções. Como exemplo a entalpia depende da temperatura e pressão do fluido que se deseja estudar. Porém, não possui a propriedade pressão relativa.

O EES é capaz de gerar tabelas através dos cálculos nele realizados, onde é possível deixar um parâmetro da tabela variando como o usuário determinar, enquanto o software é capaz calcular automaticamente os valores que dependem desse parâmetro que o usuário define como variável. Como ilustra a figura A1.

Es EES Comm	ercial Version: E:\novo	s cálculos\cp vari	ável ciclo rea	I SGT-300.EES - [Par	ametric Table]							
Es File Edi	t Search Options	Calculate Table	es Plots V	Vindows Help Ex	amples							
o B	20 C C C C C C C C C C C C C C C C C C C	🗊 🖌 🔳 🛲			al 📼 📼 📼			?				
Table 1												
151	1 T1 2 [K]	T2 _r	T3 [K]	⁴ T4 _r ■ ⁵	W _{comp}	W _{turb}	7 Wlíqcalculado	Q _{ar1} ₽	à _h ■	10 In Taxa _{calor,PCI}	m _{comb}	12 η _{calculado} [%]
Run 1	278	623,7	1362	793,4	353,7	654,6	8892	1459	25580	11365	0,5609	34,1
Run 2	279	T1: Column 1		X	355,1	654,6	8852	1430	25503	11389	0,5596	34,05
Run 3	280			r	356,5	654,6	8812	1401	25426	11414	0,5582	34
Run 4	281	First Row 1	2	○ Clear Values	357,8	654,6	8771	1372	25348	11439	0,5569	33,95
Run 5	282	Last Row 5	1 单	Set Values	359,2	654,6	8731	1343	25271	11465	0,5555	33,9
Run 6	283	1	. 070	v	360,5	654,6	8690	1313	25193	11491	0,5542	33,85
Run 7	284	First Va	lue 278	K	361,9	654,6	8650	1284	25116	11517	0,5529	33,79
Run 8	285	Last val	ue 💌 328	ĸ	363,2	654,6	8609	1255	25038	11543	0,5515	33,74
Run 9	286	Repeat	pattern ever	y 👻 10 🌩 rov	vs 364,6	654,6	8568	1226	24961	11570	0,5502	33,69
Run 10	287			Y Canool	366	654,6	8528	1197	24884	11596	0,5488	33,63
Run 11	288			× cancer	367,3	654,6	8487	1168	24806	11624	0,5475	33,58
Run 12	289	648,3	1362	793,4	368,7	654,6	8446	1138	24729	11651	0,5462	33,52
Run 13	290	650,5	1362	793,4	370,1	654,6	8405	1109	24651	11679	0,5448	33,47
Run 14	291	652,8	1362	793,4	371,5	654,6	8364	1080	24574	11707	0,5435	33,41
Run 15	292	655	1362	793,4	372,8	654,6	8323	1051	24496	11736	0,5421	33,35
Run 16	293	657,2	1362	793,4	374,2	654,6	8282	1022	24418	11765	0,5408	33,3
Run 17	294	659,5	1362	793,4	375,6	654,6	8241	992,5	24341	11794	0,5394	33,24
Run 18	295	661,7	1362	793,4	377	654,6	8200	963,4	24263	11824	0,5381	33,18

Figura A1: Tabela elaborada no programa EES.

Como a figura A1 demonstra a temperatura do estado 1, foi o parâmetro escolhido para variar, assim os demais parâmetros presentes na tabela, que são dependentes da temperatura 1, serão calculados automaticamente pelo EES.

Para fazer os cálculos, o usuário deve escrever as equações que ele deseja na *Equations Window* (Janela de equação), conforme mostra a figura A2 a seguir.

👫 Equations Window: C:\EES32\manual\format.ees	
$\begin{array}{l} X^2 \cdot Y^A 3 = \ln(A) \\ 1/(A \cdot B/(X + Y)^2) = 0.05 \\ X + Y = 5^* integral(Y^2/3, X, 0, 1) \\ S = sum(B[i], i = 1, 10) \\ D E L T A T/(alpha + beta + mu^2) = 1 \\ G_2 = sqrt(X/(X + B)) \\ T[1] = temperature(Steam, P = 101.3, x = 1) \\ m_dot^* C_p^*(T_bar \cdot T_infinity) = Q \end{array}$	

Figura A2: Janela de equação do EES.

Após o usuário ter digitado as equações que ele deseja, este pode visualizá-las na *Formatted Equations Window* (Janela de formato de equações), nela as equações aparecem em formato matemático de simples compreensão. Como ilustra a figura A3.

Figura A3: Janela de formato de equações do EES.

O usuário após resolver a rotina desejada, irá visualizar o resultado na janela *Solution* (Solução). Como demonstra a figura A4.

Es Solution			
Main			_ _
Unit Settings: [kJ]/[C]/[kP	a]/[kg]/[degrees]		
A ₁ = 0.011 [m ²]	A ₂ = 0.011 [m ²]	h ₁ = 288.5 [kJ/kg]	
h ₂ = 288	m ₁ = 4.952	m ₂ = 4.952	
P ₁ = 700 [kPa]	P ₂ = 300 [kPa]	T ₁ = 50 [C]	
T ₂ = 42.12	∨el ₁ = 15 [m/s]	∨el ₂ = 36.59	
v ₁ = 0.03332 [m ³ /kg]	v ₂ = 0.08129		
			_

Figura A4: Janela de solução do EES.

Como dito anteriormente, o programa é capaz de gerar gráficos, 2d ou 3d, como demonstram as figuras A5(a) e (b).

Figura A5 (a): Gráfico 3d gerado pelo programa EES.

Figura A4 (b): Gráfico 2d gerado pelo programa EES.

O EES possui uma biblioteca de funções extensa, porém se o usuário não achar a função que ele deseja utilizar no programa. O software admite que o usuário possa utilizar outros programas de resolução numérica, como FORTRAN, Pascal e C, e transporte os cálculos realizados por esses programas descritos para o EES.

Apêndice B – Memória de cálculo do software EES

Os resultados apresentados no estudo, foram obtidos através das memórias de cálculo que serão mostradas a seguir. Serão demonstrados os cálculos feitos para a turbina modelo SGT -100, pois para os demais modelos é apenas necessário mudar os valores presentes no catálogo do fabricante, referente a cada modelo.

Turbina SGT -100, ciclo ideal considerando o calor específico constante.

```
"Dados de catálogo SGT - 100"
W_dot_liq = 5700 [kW]
eta_bry = 0,329
Taxa_calor = 10948 [kJ/kW-h]
Q_dot_entra = 17334,3 [kJ/s]
m_dot_ar = 19,7 [kg/s]
P ratio = 14,9
T4 = 816 [K]
T3 = 1394 [K]
PCI = 50050 [kJ/kg]
"Ar de admissão"
T1 = 288 [K]
P1 = 101,3 [kPa]
h1 = ENTHALPY(Air;T=T1)
s1 = ENTROPY(Air;T=T1;P=P1)
k=1,4
"Compressão"
P2/P1 = P_ratio
T2_s/T1 = P_ratio^{((k - 1)/k)}
h2_s = ENTHALPY(Air;T=T2_s)
s1 = s2_s
eta_compressão = 1
W_compressão= (h2_s - h1)
"Combustão"
P3 = P2
h3 = ENTHALPY(Air;T=T3)
s3 = ENTROPY(Air;T=T3;P=P3)
Q_dot_h = m_dot_ar * (h3 - h2_s)
Q_dot_h = m_dot_combustível * PCI
Q_h = Q_dot_h/m_dot_ar
"Expansão"
P3/P4 = P_ratio
T3/T4_s = P_ratio^{((k - 1)/k)}
h4_s = ENTHALPY(Air;T=T4_s)
s4_s = s3
eta_turbina = 1
W_{turbina} = (h3 - h4_s)
```

"Trabalho líquido"

W_líquido = W_turbina - W_compressão W_dot_líquido = m_dot_ar * W_líquido

"Rendimento" eta_ciclo = (W_líquido/Q_h) * 100

"Consumo específico de combustível" C_esp= (3600*m_dot_combustível)/W_dot_líquido

"Taxa de Calor PCI" Taxa_calor_PCI = C_esp * PCI

Turbina SGT – 100, ciclo real considerando o calor específico constante.

```
"Dados de catálogo SGT - 100"
W_dot_liq = 5700 [kW]
eta_bry = 0,329
Taxa_calor = 10948 [kJ/kW-h]
Q_dot_entra = 17334,3 [kJ/s]
m dot ar = 19,7 [kg/s]
P ratio = 14.9
T4 = 816 [K]
T3 = 1439 [K]
PCI = 50050 [kJ/kg]
"Ar de admissão"
T1 = 288 [K]
P1 = 101,3 [kPa]
h1 = ENTHALPY(Air;T=T1)
s1 = ENTROPY(Air;T=T1;P=P1)
k=1,4
"Compressão"
P2/P1 = P_ratio
T2_s/T1 = P_ratio^{((k - 1)/k)}
h2_s = ENTHALPY(Air;T=T2_s)
s1 = s2_s
eta_compressão = 1 - (0,04 + (P_ratio - 1)/150)
eta\_compressão = (T2\_s - T1)/(T2\_r - T1)
h2 r = ENTHALPY(Air;T=T2 r)
s2 r = ENTROPY(Air;T=T2 r;P=P2)
W_compressão= (h2_r - h1)
"Combustão"
P3 = P2
h3 = ENTHALPY(Air;T=T3)
s3 = ENTROPY(Air;T=T3;P=P3)
Q_dot_h = m_dot_ar * (h3 - h2_r)
Q_dot_h = m_dot_combustível * PCI
Q_h = Q_dot_h/m_dot_ar
"Expansão"
P3/P4 = P_ratio
T3/T4_s = P_ratio^{((k - 1)/k)}
```

h4_s = ENTHALPY(Air;T=T4_s)

s4_s = s3 eta_turbina = 1 - (0,03 + (P_ratio - 1)/180) eta_turbina = (T3 - T4_r)/(T3 - T4_s) h4_r = ENTHALPY(Air;T=T4_r) s4_r = ENTROPY(Air;T=T4_r;P=P4) W_turbina = (h3 - h4_r)

"Trabalho líquido" W_líquido = W_turbina - W_compressão W_dot_líquido = m_dot_ar * W_líquido

"Rendimento" eta_ciclo = (W_líquido/Q_h) * 100

"Consumo específico de combustível" C_esp= (3600*m_dot_combustível)/W_dot_líquido

"Taxa de Calor PCI" Taxa_calor_PCI = C_esp * PCI

Turbina SGT – 100, ciclo ideal considerando o calor específico variável.

```
"Dados de catálogo SGT - 100"
W_{dot_{lig}} = 5700 [kW]
eta bry = 0,329
Taxa_calor = 10948 [kJ/kW-h]
Q_dot_entra = 17334,3 [kJ/s]
m_dot_ar = 19,7 [kg/s]
P_ratio = 14,9
T4 = 816 [K]
T3 = 1393 [K]
PCI = 50050 [kJ/kg]
"Ar de admissão"
T1_f = 328 [K]
T1 = 288 [K]
P1 = 101,3 [kPa]
h1 = ENTHALPY(Air;T=T1)
s1 = ENTROPY(Air;T=T1;P=P1)
cp ar 1 = CP(Air;T=T1)
cv ar 1 = CV(Air;T=T1)
k1 = cp_ar_1/cv_ar_1
"Compressão"
P2/P1 = P ratio
T2_s/T1 = P_ratio^{(k1 - 1)/k1}
h2_s = ENTHALPY(Air;T=T2_s)
s1 = s2_s
eta_comp = 1
W_comp = (h2_s - h1)
Q_dot_ar_1 = m_dot_ar^cp_ar_1^{(T1_f - T1)}
"Combustão"
P2 = P3
h3 = ENTHALPY(Air;T=T3)
s3 = ENTROPY(Air;T=T3;P=P3)
```

 $\begin{array}{l} cp_gas = CP(Air;T=T3) \\ cv_gas = CV(Air;T=T3) \\ k3 = cp_gas/cv_gas \\ f = (cp_gas^*(T3 - 298) - cp_ar_1^*(T2_s - 298))/(\ PCI - cp_gas^*(T3 - 298)) \\ f = m_dot_comb/m_dot_ar \\ Q_dot_h = (m_dot_ar + m_dot_comb) * cp_gas * (T3 - T2_s) \\ Q_h = Q_dot_h/m_dot_ar \end{array}$

"Expansão" P4/P3 = 1/P_ratio T3/T4_s = P_ratio^((k3 - 1)/k3) h4_s = ENTHALPY(Air;T=T4_s) s4_s = s3 eta_turb = 1 h4 = ENTHALPY(Air;T=T4) W_turb = (h3 - h4_s)

"Trabalho Líquido" W_líq_calculado = W_turb - W_comp W_dot_líq_calculado = W_líq_calculado * (m_dot_ar + m_dot_comb)

"Rendimento" eta_calculado = (W_líq_calculado/Q_h) *100

"Consumo específico de combustível" C_esp = (3600*m_dot_comb)/W_dot_líq_calculado

"Taxa de Calor PCI" Taxa_calor_PCI = C_esp * PCI

Turbina SGT - 100, ciclo real considerando o calor específico variável.

```
"Ar de admissão"
T1 = 288 [K]
T_1f = 328[K]
P1 = 101,3 [kPa]
h1 = ENTHALPY(Air;T=T1)
s1 = ENTROPY(Air;T=T1;P=P1)
cp_ar_1 = CP(Air;T=T1)
cv ar 1 = CV(Air;T=T1)
k1 = cp_ar_1/cv_ar_1
"Compressão"
P2/P1 = P ratio
T2_s/T1 = P_ratio^{(k1 - 1)/k1}
h2_s = ENTHALPY(Air;T=T2_s)
s1 = s2_s
eta\_comp = 1 - (0,04 + (P\_ratio - 1)/150)
eta\_comp = (T2\_s - T1)/(T2\_r - T1)
h2_r = ENTHALPY(Air;T=T2_r)
s2_r = ENTROPY(Air;T=T2_r;P=P2)
cp_ar_2 = CP(Air;T=T2_r)
W_{comp} = (h2_r - h1)
Q_dot_ar_1 = m_dot_ar^cp_ar_1^{(T_1f - T1)}
```

```
"Combustão"

P2 = P3

h3 = ENTHALPY(Air;T=T3)

s3 = ENTROPY(Air;T=T3;P=P3)

cp_gas = CP(Air;T=T3)

cv_gas = CV(Air;T=T3)

k3 = cp_gas/cv_gas

f = (cp_gas*(T3 - 298) - cp_ar_1*(T2_r - 298))/(PCI - cp_gas*(T3 - 298))

f = m_dot_comb/m_dot_ar

Q_dot_h = m_dot_ar * cp_gas * (T3 - T2_r)

Q_h = Q_dot_h/m_dot_ar
```

```
"Expansão"

P4/P3 = 1/P_ratio

T3/T4_s = P_ratio^{((k3 - 1)/k3)}

h4_s = ENTHALPY(Air;T=T4_s)

s4_s = s3

eta_turb = 1 - (0,03 + (P_ratio - 1)/180)

eta_turb = (T3 - T4_r)/(T3 - T4_s)

h4_r = ENTHALPY(Air;T=T4_r)

s4_r = ENTROPY(Air;T=T4_r)

s4_r = ENTROPY(Air;T=T4_r)

b4 = ENTHALPY(Air;T=T4_r)

b4 = ENTHALPY(Air;T=T4_r)

b4 = ENTHALPY(Air;T=T4_r)

b4 = ENTHALPY(Air;T=T4_r)
```

"Trabalho Líquido" W_líq_calculado = W_turb - W_comp W_dot_líq_calculado = W_líq_calculado * (m_dot_ar + m_dot_comb)

"Rendimento" eta_calculado = (W_líq_calculado/Q_h)*100

"Consumo específico de combustível" C_esp = (3600*m_dot_comb)/W_dot_líq_calculado

"Taxa de Calor PCI" Taxa_calor_PCI = C_esp * PCI